【題目】已知定義在R上的奇函數(shù)fx)=exaex+2sinx滿足,則zxlny的最小值是(

A.ln6B.2C.ln6D.2

【答案】B

【解析】

由已知可求a,然后對函數(shù)求導(dǎo),結(jié)合導(dǎo)數(shù)可判斷函數(shù)的單調(diào)性,進而可得關(guān)于x,y的不等式組,結(jié)合線性規(guī)劃知識即可求解

解:由題意f0)=1a0可得a1

所以fx)=exex+2sinx,2+2cosx0,

fx)在R上單調(diào)遞增,則,

作出可行域如圖所示,其中A0,),B03),C,),

設(shè)yexz,則由圖象可知,設(shè)yx+3yexz相切于點Dx0,y0),

y′=exz,令1可得x0z,

yx+3yexz相切于點D(﹣2,1)時,z取得最小值zmin=﹣2.

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)fx)=Asinωx)(A0,ω0,0φπ)的部分圖象如圖所示,又函數(shù).

1)求函數(shù)的單調(diào)減區(qū)間;

2)設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,又,且銳角C滿足,若sinB2sinA,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求曲線在點處的切線方程;

(2)令,討論的單調(diào)性并判斷有無極值,若有,求出極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,其焦點到準(zhǔn)線的距離為2.直線與拋物線交于,兩點,過,分別作拋物線的切線交于點.

1)求拋物線的標(biāo)準(zhǔn)方程;

2)若,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了釋放學(xué)生壓力,某校高三年級一班進行了一個投籃游戲,其間甲、乙兩人輪流進行籃球定點投籃比賽(每人各投一次為一輪).在相同的條件下,每輪甲乙兩人站在同一位置上,甲先投,每人投一次籃,兩人有人命中,命中者得分,未命中者得分;兩人都命中或都未命中,兩人均得.設(shè)甲每次投籃命中的概率為,乙每次投籃命中的概率為,且各次投籃互不影響.

1)經(jīng)過輪投籃,記甲的得分為,求的分布列及期望;

2)若經(jīng)過輪投籃,用表示第輪投籃后,甲的累計得分低于乙的累計得分的概率.

①求;

②規(guī)定,經(jīng)過計算機模擬計算可得,請根據(jù)①中值求出的值,并由此求出數(shù)列的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與橢圓交于不同的兩點,線段的中點為,且直線與直線的斜率之積為.若直線與直線交于點,與直線交于點,且點為直線上一點.

1)求的軌跡方程;

2)若為橢圓的上頂點,直線軸交點,記表示面積,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1)某中學(xué)理學(xué)社為了吸收更多新社員,在校團委的支持下,在高一學(xué)年組織了抽簽贈書活動.月初報名,月末抽簽,最初有30名同學(xué)參加.社團活動積極分子甲同學(xué)參加了活動.

①第一個月有18個中簽名額.甲先抽簽,乙和丙緊隨其后抽簽.求這三名同學(xué)同時中簽的概率.

②理學(xué)社設(shè)置了第()個月中簽的名額為,并且抽中的同學(xué)退出活動,同時補充新同學(xué),補充的同學(xué)比中簽的同學(xué)少2個,如果某次抽簽的同學(xué)全部中簽,則活動立刻結(jié)束.求甲同學(xué)參加活動時間的期望.

2)某出版集團為了擴大影響,在全國組織了抽簽贈書活動.報名和抽簽時間與(1)中某中學(xué)理學(xué)社的報名和抽簽時間相同,最初有30萬人參加,甲同學(xué)在其中.每個月抽中的人退出活動,同時補充新人,補充的人數(shù)與中簽的人數(shù)相同.出版集團設(shè)置了第()個月中簽的概率為,活動進行了個月,甲同學(xué)很幸運,中簽了,在此條件下,求證:甲同學(xué)參加活動時間的均值小于個月.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等邊與直角梯形所在的平面互相垂直,且,,.

1)證明:直線平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),的導(dǎo)函數(shù).

1)討論的單調(diào)性,設(shè)的最小值為,并求證:

2)若有三個零點,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案