已知復(fù)數(shù)z=(a-1)+i(a∈R)是純虛數(shù),則
1+i
a-i
的值是
 
考點:復(fù)數(shù)代數(shù)形式的乘除運算
專題:數(shù)系的擴充和復(fù)數(shù)
分析:根據(jù)純虛數(shù)的定義求得a,再利用兩個復(fù)數(shù)代數(shù)形式的乘除法法則求得
1+i
a-i
的值.
解答: 解:∵復(fù)數(shù)z=(a-1)+i(a∈R)是純虛數(shù),∴a=1,
1+i
a-i
=
1+i
1-i
=
(1+i)2
(1-i)(1+i)
=
2i
2
=i,
故答案為:i.
點評:本題主要考查復(fù)數(shù)的基本概念,兩個復(fù)數(shù)代數(shù)形式的乘除法法則的應(yīng)用,虛數(shù)單位i的冪運算性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-x-6<0},B={x|m-2<x<m}.
(Ⅰ)若m=4,全集U=A∪B,求A∩(∁UB);
(Ⅱ)若A∩B=∅,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將各項均為正數(shù)的數(shù)列{an}排成如下所示的三角形數(shù)陣(第n行有n個數(shù),同一行中,下標(biāo)小的數(shù)排在左邊).bn表示數(shù)陣中,第n行、第1列的數(shù).已知數(shù)列{bn}為等比數(shù)列,且從第3行開始,各行均構(gòu)成公差為d的等差數(shù)列(第3行的3個數(shù)構(gòu)成公差為d的等差數(shù)列;第4行的4個數(shù)構(gòu)成公差為d的等差數(shù)列,…),a1=1,a12=17,a18=34.

(1)求數(shù)陣中第m行、第n列的數(shù)A(m,n)(用m、n表示).
(2)求a2014的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

寫出命題,“若α=
π
3
,則cosα=
1
2
”的否命題是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,對于任意相鄰三點都不共線的有序整點列(整點即橫縱坐標(biāo)都是整數(shù)的點)A(n):A1,A2,A3,…,An與B(n):B1,B2,B3,…,B(n),其中n≥3,若同時滿足:①兩點列的起點和終點分別相同;②線段AiAi+1⊥BiBi+1,其中i=1,2,3,…,n-1,則稱A(n)與B(n)互為正交點列.則A(3):A1(0,2),A2(3,0)),A3(5,2)的正交點列B(3)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(
1
x
)=
x
1-x
,則函數(shù)f(x)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式|x-3|-|x+2|≥m有解,則實數(shù)m的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是R上的奇函數(shù),且在區(qū)間(0,+∞)上遞增,A(-1,2),B(4,2)是其圖象上兩點,則不等式|f(x+2)|<2的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2x+
π
4
),為了得到函數(shù)g(x)=sin2x的圖象,只需將函數(shù)y=f(x)的圖象( 。
A、向右平移
π
8
個單位長度
B、向右平移
π
4
個單位長度
C、向左平移
π
8
個單位長度
D、向左平移
π
4
個單位長度

查看答案和解析>>

同步練習(xí)冊答案