7.已知函數(shù)y=f(x)的圖象如圖,則${f^'}({x_A})與{f^'}({x_B})$的關(guān)系是:( 。
A.${f^'}({x_A})>{f^'}({x_B})$B.${f^'}({x_A})<{f^'}({x_B})$C.${f^'}({x_A})={f^'}({x_B})$D.不能確定

分析 根據(jù)導(dǎo)數(shù)的幾何意義,判斷在A,B兩處的切線斜率即可得到結(jié)論.

解答 解:由圖象可知函數(shù)在A處的切線斜率小于B處的切線斜率,
∴根據(jù)導(dǎo)數(shù)的幾何意義可知f′(xA)<f′(xB),
故選:B.

點(diǎn)評 本題主要考查導(dǎo)數(shù)的幾何意義,根據(jù)導(dǎo)數(shù)和切線斜率之間的關(guān)系是解決本題的關(guān)鍵,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知P是曲線y=$\frac{1}{4}$x2-$\frac{1}{2}$lnx上的動(dòng)點(diǎn),Q是直線y=$\frac{3}{4}$x-1上的動(dòng)點(diǎn),則PQ的最小值為$\frac{2-2ln2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在底面半徑為2母線長為4的圓錐中內(nèi)接一個(gè)高為x的正四棱柱,
(1)用x表示正四棱柱的側(cè)面積;
(2)x為何值時(shí),正四棱柱的側(cè)面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.當(dāng)x+y+z=1時(shí),則x2+y2+z2的最小值為( 。
A.$\frac{1}{3}$B.$\frac{1}{9}$C.$\frac{1}{27}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且滿足$f(x)=2x{f^'}(1)+\frac{1}{x}$,則f′(1)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下面的莖葉圖記錄了甲、乙兩名同學(xué)在10次英語聽力比賽中的成績(單位:分),已知甲得分的中位數(shù)為76分,乙得分的平均數(shù)是75分,則下列結(jié)論正確的是( 。
A.$\overline{x_甲}=76,\overline{x_乙}=75$B.乙同學(xué)成績較為穩(wěn)定
C.甲數(shù)據(jù)中x=3,乙數(shù)據(jù)中y=6D.甲數(shù)據(jù)中x=6,乙數(shù)據(jù)中y=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知向量$\overrightarrow m=(\sqrt{3}sinx,sinx),\overrightarrow n=(cosx,sinx)$.
(Ⅰ)若$\overrightarrow m∥\overrightarrow n$且$x∈[{0,\frac{π}{2}}]$,求角x;
(Ⅱ)若$f(x)=\overrightarrow{m•}\overrightarrow n$,求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)$f(x)=\frac{1}{x^2}+2x(x>0)$的最小值為(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知f(α)=$\frac{{sin(π-α)cos(2π-α)sin(-α+\frac{3π}{2})}}{tan(-α-π)sin(-π-α)cos(-π+α)}$;
(1)化簡f(α);
(2)若α的終邊在第二象限,$sinα=\frac{3}{5}$,求f(α)的值.

查看答案和解析>>

同步練習(xí)冊答案