【題目】執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是(

A.16
B.17
C.14
D.15

【答案】A
【解析】解:第一次循環(huán):S=log2 ,n=2;
第二次循環(huán):S=log2 +log2 ,n=3;
第三次循環(huán):S=log2 +log2 +log2 ,n=4;

第n次循環(huán):S=log2 +log2 +log2 +…+log2 =log2 ,n=n+1;
令log2 <﹣3,解得n>15.
∴輸出的結(jié)果是n+1=16.
故選:A.
【考點(diǎn)精析】利用程序框圖對(duì)題目進(jìn)行判斷即可得到答案,需要熟知程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在軸上,離心率為的橢圓C過點(diǎn)

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)不過坐標(biāo)原點(diǎn)O的直線與橢圓C交于P,Q兩點(diǎn),若,證明:點(diǎn)O到直線的距離為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a>0,a≠1且loga3>loga2,若函數(shù)f(x)=logax在區(qū)間[a,2a]上的最大值與最小值之差為1.
(1)求a的值;
(2)解不等式 ;
(3)求函數(shù)g(x)=|logax﹣1|的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=﹣x2+ax+b,且f(4)=﹣3.
(1)若函數(shù)f(x)在區(qū)間[2,+∞)上遞減,求實(shí)數(shù)b的取值范圍;
(2)若函數(shù)f(x)的圖象關(guān)于直線x=1對(duì)稱,且關(guān)于x的方程f(x)=log2m在區(qū)間[﹣3,3]上有解,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)為了解70﹣80歲的老人的日平均睡眠時(shí)間(單位:h),隨機(jī)選擇了50位老人進(jìn)行調(diào)查,下表是這50位老人睡眠時(shí)間的頻率分布表:

序號(hào)i

分組
(睡眠時(shí)間)

組中值(Gi

頻數(shù)
(人數(shù))

頻率(Fi

1

[4,5)

4.5

6

0.12

2

[5,6)

5.5

10

0.20

3

[6,7)

6.5

20

0.40

4

[7,8)

7.5

10

0.20

5

[8,9]

8.5

4

0.08

在上述統(tǒng)計(jì)數(shù)據(jù)的分析中一部分計(jì)算見算法流程圖,則輸出的S的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017北京豐臺(tái)5月綜合測(cè)試】已知函數(shù).

當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

證明:對(duì)于,在區(qū)間上有極小值,且極小值大于0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知cosC+(cosA﹣ sinA)cosB=0.
(1)求角B的大。
(2)若b= ,c=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F是拋物線y2=x的焦點(diǎn),A,B是該拋物線上的兩點(diǎn),|AF|+|BF|=3,則線段AB的中點(diǎn)到y(tǒng)軸的距離為(  )
A.
B.1
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)訄AC過點(diǎn)(1,0),且于直線x=﹣1相切.
(1)求圓心C的軌跡M的方程;
(2)A,B是M上的動(dòng)點(diǎn),O是坐標(biāo)原點(diǎn),且 , 求證:直線AB過定點(diǎn),并求出該點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案