直線x-y+1=0與2x-2y-1=0是圓的兩條切線,則該圓的面積是
 
考點(diǎn):直線與圓的位置關(guān)系,兩條平行直線間的距離
專題:直線與圓
分析:求出兩條平行線之間的距離,即可求出圓的直徑,然后求出圓的面積.
解答: 解:直線x-y+1=0與2x-2y-1=0是平行線,平行線之間的距離就是圓的直徑,
∴2r=
1+
1
2
2
=
3
2
4

r=
3
2
8
.所求圓的面積為:πr2=
32

故答案為:
32
點(diǎn)評(píng):本題直線與圓的位置關(guān)系,平行線之間的距離的求法,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

畫出定義域?yàn)閧x|-3≤x≤8,且x≠5},值域?yàn)閧y|-1≤y≤2,y≠0}的一個(gè)函數(shù)的圖象.如果平面直角坐標(biāo)系中點(diǎn)P(x,y)的坐標(biāo)滿足-3≤x≤8,-1≤y≤2,那么其中哪些點(diǎn)不能在圖象上?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正四棱錐P-ABCD中,PA=2,直線PA與平面ABCD所成的角為60°.
(1)求正四棱錐P-ABCD的表面積S和體積V.
(2)求二面角P-BC-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義函數(shù)φ(x)=
1,  x≥0
-1, x<0
,f(x)=x2-2x(x2-a)φ(x2-a).
(1)解關(guān)于a的不等式f(1)≤f(0);
(2)已知函數(shù)f(x)在x∈[0,1]上的最小值為f(1),求正實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,且對(duì)任意的n∈N*,都有2Sn=an2+an
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足b1=1,2bn+1-bn=0(n∈N*),且cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Tn
(3)在(2)的條件下,是否存在整數(shù)m,使得對(duì)任意的正整數(shù)n,都有m-2<Tn<m+2.若存在,求出m的值;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某醫(yī)院從甲、乙等6名醫(yī)生中選出4名并按一定次序派出(每次派出一名)支援社區(qū)門診,那么“甲、乙都被選中且甲在乙之前被派出(不一定相鄰)”的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=x2-2x-4lnx(x>0),則f(x)的單調(diào)遞增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i是虛數(shù)單位,復(fù)數(shù)z1=1+i,z2=1-i,則
z1
z2
的模為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
16
+
y2
12
=1,則以點(diǎn)M(-1,2)為中點(diǎn)的弦所在直線方程為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案