【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為t為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為.

1)求圓C的直角坐標(biāo)方程及直線的斜率;

2)直線與圓C交于M,N兩點(diǎn),中點(diǎn)為Q,求Q點(diǎn)軌跡的直角坐標(biāo)方程.

【答案】(1)圓C的直角坐標(biāo)方程為,直線的斜率為(2)Q點(diǎn)的軌跡方程為,

【解析】

1)直接利用轉(zhuǎn)換關(guān)系式,把參數(shù)方程、極坐標(biāo)方程和直角坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換;

2)利用中點(diǎn)的坐標(biāo)公式化簡(jiǎn)得,進(jìn)而可得,再求得的范圍即可得到結(jié)論.

1)由

即圓C的直角坐標(biāo)方程為.

由直線的參數(shù)方程可得,故直線的斜率為1.

2)設(shè),,中點(diǎn),將M,N代入圓方程得:

①,

②,

-②得:,

化簡(jiǎn)得

因?yàn)橹本的斜率為1,所以上式可化為,

代入圓的方程,解得

所以Q點(diǎn)的軌跡方程為,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題:

①函數(shù)的圖象關(guān)于軸對(duì)稱的充要條件是,

②已知是等差數(shù)列的前項(xiàng)和,若,則;

③函數(shù)與函數(shù)的圖象關(guān)于直線對(duì)稱;

④對(duì)于任意兩條異面直線,都存在無(wú)窮多個(gè)平面與這兩條異面直線所成的角相等.

其中正確的命題有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在極坐標(biāo)系中,O為極點(diǎn),點(diǎn)在曲線上,直線l過(guò)點(diǎn)且與垂直,垂足為P.

1)當(dāng)時(shí),求l的極坐標(biāo)方程;

2)當(dāng)MC上運(yùn)動(dòng)且P在線段OM上時(shí),求P點(diǎn)軌跡的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知梯形中,,,四邊形為矩形,,平面平面

Ⅰ)求證:平面;

Ⅱ)求平面與平面所成銳二面角的余弦值;

Ⅲ)在線段上是否存在點(diǎn),使得直線與平面所成角的正弦值為,若存在,求出線段的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年遼寧省正式實(shí)施高考改革.新高考模式下,學(xué)生將根據(jù)自己的興趣、愛好、學(xué)科特長(zhǎng)和高校提供的“選考科目要求”進(jìn)行選課.這樣學(xué)生既能尊重自己愛好、特長(zhǎng)做好生涯規(guī)劃,又能發(fā)揮學(xué)科優(yōu)勢(shì),進(jìn)而在高考中獲得更好的成績(jī)和實(shí)現(xiàn)自己的理想.考改實(shí)施后,學(xué)生將在高二年級(jí)將面臨著的選課模式,其中“3”是指語(yǔ)、數(shù)、外三科必學(xué)內(nèi)容,“1”是指在物理和歷史中選擇一科學(xué)習(xí),“2”是指在化學(xué)、生物、地理、政治四科中任選兩科學(xué)習(xí).某校為了更好的了解學(xué)生對(duì)“1”的選課情況,學(xué)校抽取了部分學(xué)生對(duì)選課意愿進(jìn)行調(diào)查,依據(jù)調(diào)查結(jié)果制作出如下兩個(gè)等高堆積條形圖:根據(jù)這兩幅圖中的信息,下列哪個(gè)統(tǒng)計(jì)結(jié)論是不正確的(

A.樣本中的女生數(shù)量多于男生數(shù)量

B.樣本中有學(xué)物理意愿的學(xué)生數(shù)量多于有學(xué)歷史意愿的學(xué)生數(shù)量

C.樣本中的男生偏愛物理

D.樣本中的女生偏愛歷史

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為t為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為.

1)求圓C的直角坐標(biāo)方程及直線的斜率;

2)直線與圓C交于MN兩點(diǎn),中點(diǎn)為Q,求Q點(diǎn)軌跡的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市一中學(xué)高三年級(jí)統(tǒng)計(jì)學(xué)生的最近20次數(shù)學(xué)周測(cè)成績(jī)(滿分150分),現(xiàn)有甲乙兩位同學(xué)的20次成績(jī)?nèi)缜o葉圖所示:

1)根據(jù)莖葉圖求甲乙兩位同學(xué)成績(jī)的中位數(shù),并據(jù)此判斷甲乙兩位同學(xué)的成績(jī)誰(shuí)更好?

2)將同學(xué)乙的成績(jī)的頻率分布直方圖補(bǔ)充完整;

3)現(xiàn)從甲乙兩位同學(xué)的不低于140分的成績(jī)中任意選出2個(gè)成績(jī),設(shè)選出的2個(gè)成績(jī)中含甲的成績(jī)的個(gè)數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(數(shù)學(xué)文卷·2017屆重慶十一中高三12月月考第16題) 現(xiàn)介紹祖暅原理求球體體積公式的做法:可構(gòu)造一個(gè)底面半徑和高都與球半徑相等的圓柱,然后在圓柱內(nèi)挖去一個(gè)以圓柱下底面圓心為頂點(diǎn),圓柱上底面為底面的圓錐,用這樣一個(gè)幾何體與半球應(yīng)用祖暅原理(圖1),即可求得球的體積公式.請(qǐng)研究和理解球的體積公式求法的基礎(chǔ)上,解答以下問(wèn)題:已知橢圓的標(biāo)準(zhǔn)方程為 ,將此橢圓繞y軸旋轉(zhuǎn)一周后,得一橄欖狀的幾何體(圖2),其體積等于______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面,底面是直角梯形,其中,,,為棱上的點(diǎn),且

1)求證:平面;

2)求二面角的余弦值;

3)設(shè)為棱上的點(diǎn)(不與,重合),且直線與平面所成角的正弦值為,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案