【題目】已知橢圓的左頂點(diǎn)為,兩個(gè)焦點(diǎn)與短軸一個(gè)頂點(diǎn)構(gòu)成等腰直角三角形,過(guò)點(diǎn)且與x軸不重合的直線l與橢圓交于M,N不同的兩點(diǎn).

(Ⅰ)求橢圓P的方程;

(Ⅱ)當(dāng)AM與MN垂直時(shí),求AM的長(zhǎng);

(Ⅲ)若過(guò)點(diǎn)P且平行于AM的直線交直線于點(diǎn)Q,求證:直線NQ恒過(guò)定點(diǎn).

【答案】(1);(2);(3)證明見(jiàn)解析.

【解析】

1)由題意布列關(guān)于a,b的方程組,即可得到結(jié)果;

2)由垂直得,結(jié)合點(diǎn)在曲線上,可得M點(diǎn)坐標(biāo),結(jié)合兩點(diǎn)間距離公式可得結(jié)果;

3)設(shè),,由題意,設(shè)直線的方程為,利用韋達(dá)定理即可得到結(jié)果.

(1)因?yàn)?/span>,所以

因?yàn)閮蓚(gè)焦點(diǎn)與短軸一個(gè)頂點(diǎn)構(gòu)成等腰直角三角形,

所以 ,

,

所以 ,

所以橢圓方程為 .

(2)方法一:

設(shè),

,

,

,

,(舍)

所以.

方法二:

設(shè),

因?yàn)?/span>垂直,

所以點(diǎn)在以為直徑的圓上,

又以為直徑的圓的圓心為,半徑為,方程為,

,

(舍)

所以

方法三:

設(shè)直線的斜率為, ,其中

化簡(jiǎn)得

當(dāng)時(shí),

顯然直線存在斜率且斜率不為0.

因?yàn)?/span>垂直,

所以 ,

, ,

所以

(3)直線恒過(guò)定點(diǎn),

設(shè),,

由題意,設(shè)直線的方程為,

,

顯然,,則,,

因?yàn)橹本平行,所以,

的直線方程為,

,則,即 ,

,

直線的方程為,

,得,

因?yàn)?/span>,故,

所以直線恒過(guò)定點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,角, , 所對(duì)的邊分別為, , ,且.

(Ⅰ)求角的大;

(Ⅱ)已知, 的面積為,求的周長(zhǎng).

【答案】(Ⅰ).(Ⅱ).

【解析】試題分析】(I)利用正弦定理和三角形內(nèi)角和定理化簡(jiǎn)已知,可求得的值,進(jìn)而求得的大小.(II)利用余弦定理和三角形的面積公式列方程組求解的的值,進(jìn)而求得三角形周長(zhǎng).

試題解析】

(Ⅰ)由及正弦定理得, ,

,∴,

又∵,∴.

又∵,∴.

(Ⅱ)由 ,根據(jù)余弦定理得

的面積為,得.

所以 ,得,

所以周長(zhǎng).

型】解答
結(jié)束】
18

【題目】為促進(jìn)農(nóng)業(yè)發(fā)展,加快農(nóng)村建設(shè),某地政府扶持興建了一批“超級(jí)蔬菜大棚”.為了解大棚的面積與年利潤(rùn)之間的關(guān)系,隨機(jī)抽取了其中的7個(gè)大棚,并對(duì)當(dāng)年的利潤(rùn)進(jìn)行統(tǒng)計(jì)整理后得到了如下數(shù)據(jù)對(duì)比表:

大棚面積(畝)

4.5

5.0

5.5

6.0

6.5

7.0

7.5

年利潤(rùn)(萬(wàn)元)

6

7

7.4

8.1

8.9

9.6

11.1

由所給數(shù)據(jù)的散點(diǎn)圖可以看出,各樣本點(diǎn)都分布在一條直線附近,并且有很強(qiáng)的線性相關(guān)關(guān)系.

(Ⅰ)求關(guān)于的線性回歸方程;

(Ⅱ)小明家的“超級(jí)蔬菜大棚”面積為8.0畝,估計(jì)小明家的大棚當(dāng)年的利潤(rùn)為多少;

(Ⅲ)另外調(diào)查了近5年的不同蔬菜畝平均利潤(rùn)(單位:萬(wàn)元),其中無(wú)絲豆為:1.5,1.7,2.1,2.2,2.5;彩椒為:1.8,1.9,1.9,2.2,2.2,請(qǐng)分析種植哪種蔬菜比較好?

參考數(shù)據(jù): .

參考公式: , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,分別為三邊中點(diǎn),將分別沿向上折起,使重合,記為,則三棱錐的外接球表面積的最小值為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于函數(shù),.有下列命題:

①對(duì),恒有成立.

,使得成立.

③“若,則有.”的否命題.

④“若,則有.”的逆否命題.

其中,真命題有_____________.(只需填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下圖1,是某設(shè)計(jì)員為一種商品設(shè)計(jì)的平面logo樣式.主體是由內(nèi)而外的三個(gè)正方形構(gòu)成.該圖的設(shè)計(jì)構(gòu)思如圖2,中間正方形的四個(gè)頂點(diǎn),分別在最外圍正方形ABCD的邊上,且分所在邊為a,b兩段.設(shè)中間陰影部分的面積為,最內(nèi)正方形的面積為.當(dāng),且取最大值時(shí),定型該logo的最終樣式,則此時(shí)a,b的取值分別為_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(I)求曲線在點(diǎn)處的切線方程;

(Ⅱ)當(dāng)時(shí),求證:函數(shù)存在極小值;

(Ⅲ)請(qǐng)直接寫(xiě)出函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列的公差,數(shù)列滿足,集合.

(1)若,求集合;

(2)若,求使得集合恰好有兩個(gè)元素;

(3)若集合恰好有三個(gè)元素:,是不超過(guò)7的正整數(shù),求的所有可能的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱錐中,平面,,,的中點(diǎn),的中點(diǎn),點(diǎn)上,

1)證明:平面平面;

2)證明:平面

3)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)的導(dǎo)函數(shù).

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時(shí),證明;

(Ⅲ)設(shè)為函數(shù)在區(qū)間內(nèi)的零點(diǎn),其中,證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案