1.若復(fù)數(shù)z=1+i,i為虛數(shù)單位,則(1+z)•$\overline z$=3-i.

分析 把z=1+i代入(1+z)•$\overline z$,然后利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡得答案.

解答 解:∵z=1+i,
∴(1+z)•$\overline z$=(1+i)(1-i)=3-i.
故答案為:3-i.

點(diǎn)評 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了共軛復(fù)數(shù)的概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列結(jié)論正確的個數(shù)是( 。
①若$\overline a$=(λ,2),$\overline b$=(-3,1),且$\overline a$與$\overline b$夾角為銳角,則λ∈(-∞,$\frac{2}{3}$);
②若△ABC中,$\overrightarrow{AB}$•$\overrightarrow{BC}$<0,則△ABC是鈍角三角形;
③若△ABC中,$\overrightarrow{AB}$•$\overrightarrow{BC}$=$\overrightarrow{BC}$•$\overrightarrow{CA}$=$\overrightarrow{CA}$•$\overrightarrow{AB}$,則△ABC是正三角形.
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.?dāng)?shù)列{an}滿足a1=$\frac{4}{3}$,an+1-1=an(an-1)(n∈N*)且Sn=$\frac{1}{a_1}$+$\frac{1}{a_2}$+…+$\frac{1}{a_n}$,則Sn的整數(shù)部分的所有可能值構(gòu)成的集合是( 。
A.{0,1,2}B.{0,1,2,3}C.{1,2}D.{0,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)a=2${\;}^{\frac{1}{5}}$,b=($\frac{6}{7}$)${\;}^{\frac{1}{6}}$,c=ln$\frac{3}{π}$,則( 。
A.c<a<bB.c<b<aC.a<b<cD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在一次馬拉松比賽中,35名運(yùn)動員的成績(單位:分鐘)的莖葉圖如圖所示.若將運(yùn)動員按成績由好到差編為1~35號,再用系統(tǒng)抽樣方法從中抽取5人,則其中成績在區(qū)間[142,148]上的運(yùn)動員人數(shù)是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知全集為R,集合A={x|x<-2或x>3},B={-2,0,2,4},則(∁RA)∩B=( 。
A.{-2,0,2}B.{-2,2,4}C.{-2,0,3}D.{0,2,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某工廠欲加工一件藝術(shù)品,需要用到三棱錐形狀的坯材,工人將如圖所示的長方體ABCD-EFQH材料切割成三棱錐H-ACF.
(Ⅰ)若點(diǎn)M,N,K分別是棱HA,HC,HF的中點(diǎn),點(diǎn)G是NK上的任意一點(diǎn),求證:MG∥平面ACF;
(Ⅱ)已知原長方體材料中,AB=2,AD=3,DH=1,根據(jù)藝術(shù)品加工需要,工程師必須求出該三棱錐的高;甲工程師先求出AH所在直線與平面ACF所成的角θ,再根據(jù)公式h=AH•sinθ求三棱錐H-ACF的高h(yuǎn).請你根據(jù)甲工程師的思路,求該三棱錐的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.隨著科技的發(fā)展,手機(jī)已經(jīng)成為人們不可或缺的交流工具,除傳統(tǒng)的打電話外,手機(jī)的功能越來越強(qiáng)大,人們可以玩游戲,看小說,觀電影,逛商城等,真是“一機(jī)在手,天下我有”,所以,有人把喜歡玩手機(jī)的人冠上了名號“低頭族”,低頭族已經(jīng)嚴(yán)重影響了人們的生活,一媒體為調(diào)查市民對低頭族的認(rèn)識,從某社區(qū)的500名市民中,隨機(jī)抽取100名市民,按年齡情況進(jìn)行統(tǒng)計(jì)的頻率分布表和頻率分布直方圖.
分組(單位:歲)頻數(shù)頻率
[20,25)50.05
[25,30)200.20
[30,35)0.350
[35,40)30
[40,45]100.10
合計(jì)1001.000
(I)頻率分布表中的①②位置應(yīng)填什么數(shù)?并補(bǔ)全頻率分布直方圖,再根據(jù)頻率分布直方圖統(tǒng)計(jì)這500名市民的平均年齡;
(II)在抽出的100名中按年齡采用分層抽樣的方法抽取20名接受采訪,再從抽出的這20名中年齡在[30,40)的選取2名擔(dān)任主要發(fā)言人.記這2名主要發(fā)言人年齡在[30,35)的人數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=x2+|x-t|.
(Ⅰ)當(dāng)t=1時,求不等式f(x)≥1的解集;
(Ⅱ)設(shè)函數(shù)f(x)在[0,2]上的最小值為h(t),求h(t)的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊答案