已知函數(shù)f(x)=|2x-1|,則g(x)=f(f(x))+lnx在區(qū)間(0,1)上的零點(diǎn)的個(gè)數(shù)是
 
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先求出g(x)的解析式,把判斷函數(shù)g(x)的零點(diǎn)問(wèn)題轉(zhuǎn)化為求兩個(gè)函數(shù)交點(diǎn)的個(gè)數(shù)問(wèn)題.
解答: 解:∵x∈(0,1)時(shí),f(x)=|2x-1|,
∴f(f(x))=
|4x-1|,0<x≤
1
2
|4x-3|,
1
2
<x<1
,
∴g(x)=
|4x-1|+lnx,0<x≤
1
2
|4x-3|+lnx,
1
2
<x<1
,
g(x)的零點(diǎn)轉(zhuǎn)化為:x∈(0,
1
2
]時(shí),函數(shù)y=|4x-1|與y=-lnx的交點(diǎn)
以及x∈(
1
2
,1)時(shí),函數(shù)y=|4x-3|與y=-lnx交點(diǎn)的個(gè)數(shù);
畫(huà)出對(duì)應(yīng)函數(shù)的圖象如圖所示:
由圖象知,函數(shù)g(x)的零點(diǎn)有3個(gè).
故答案為:3.
點(diǎn)評(píng):本題考查了判斷函數(shù)零點(diǎn)的個(gè)數(shù)問(wèn)題,解題時(shí)應(yīng)結(jié)合函數(shù)的圖象進(jìn)行解答,是基礎(chǔ)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△A BC中,角 A.B.C所對(duì)的邊分別為a.b.c,已知sin2 B+sin2C=sin2 A+sin BsinC.
(1)求角 A的大。
(2)若cosB=
1
3
,a=3,求c值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在一個(gè)盒中裝有6枝圓珠筆,其中3枝一等品,2枝二等品和1枝三等品,從中任取兩枝.
(1)求恰有1枝一等品的概率;
(2)求沒(méi)有三等品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)三次函數(shù)y=f(x),當(dāng)x=3時(shí)取得極小值y=0,又在此函數(shù)的曲線上點(diǎn)(1,8)處的切線經(jīng)過(guò)點(diǎn)(3,0),求函數(shù)f(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知無(wú)窮數(shù)列{an}的各項(xiàng)均為正整數(shù),Sn為數(shù)列{an}的前n項(xiàng)和.
(Ⅰ)若數(shù)列{an}是等差數(shù)列,且對(duì)任意正整數(shù)n都有Sn2=(Sn)2成立,求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)對(duì)任意正整數(shù)n,從集合{a1,a2,…,an}中不重復(fù)地任取若干個(gè)數(shù),這些數(shù)之間經(jīng)過(guò)加減運(yùn)算后所得數(shù)的絕對(duì)值為互不相同的正整數(shù),且這些正整數(shù)與a1,a2,…,an一起恰好是1至Sn全體正整數(shù)組成的集合.
(。┣骯1,a2的值;
(ⅱ)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)滿足f(4-x)=f(x),它在x軸上截得的線段長(zhǎng)為6,且函數(shù)圖象過(guò)(3,-8),求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲袋中有1只白球,2只紅球,3只黑球;乙袋中有2只白球,3只紅球,1只黑球.現(xiàn)從兩袋中各取一個(gè)球.
(1)求取得一個(gè)白球一個(gè)紅球的概率;
(2)求取得兩球顏色相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a、b是函數(shù)f(x)=|log3x|-3-x的兩個(gè)零點(diǎn),則( 。
A、0<ab<1
B、ab=1
C、1<ab<2
D、ab≥2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+
3
2
(1-a)x2-3ax+1,求不等式-1≤f(x)≤1對(duì)x∈[0,
3
]恒成立,試求實(shí)數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案