【題目】設(shè)等差數(shù)列的公差d大于0,前n項的和為.已知18,,成等比數(shù)列.

1)求的通項公式;

2)若對任意的,都有k(18)≥恒成立,求實數(shù)k的取值范圍;

3)設(shè)().若s,t,st1,且,求s,t的值.

【答案】2;(2;(3

【解析】

1)結(jié)合等比中項的性質(zhì)列方程,將已知條件轉(zhuǎn)化為的形式列方程組,解方程組求得,由此求得的通項公式.

2)由(1)求得,將不等式分離常數(shù),利用換元法,結(jié)合基本不等式,求得的取值范圍.

3)求得的表達(dá)式,利用判斷出數(shù)列的項的大小關(guān)系,由此確定的值.

1)由于成等比數(shù)列,所以,依題意有,由于,故方程組解得,所以.的通項公式為.

2)由(1)得,由于對任意的,都有恒成立,所以對任意的恒成立.

設(shè),令,則.因為,當(dāng)且僅當(dāng)時等號成立,所以的最大值為,即的最大值為,此時,所以實數(shù)的取值范圍是.

3)由條件,,則,所以.因為,所以.即符合條件的的值分別為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定數(shù)列,對,該數(shù)列前項的最大值記為,后的最小值記為,.

(1)設(shè)數(shù)列為3,4,7,5,2,寫出,,,的值;

(2)設(shè),公比的等比數(shù)列,證明:成等比數(shù)列;

(3)設(shè),證明:的充分必要條件為是公差為的等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,兩點分別在上,且使. 現(xiàn)將沿折起,使平面平面,得到四棱錐 (如圖2

1)證明:平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱,側(cè)面底面ABC, ,,OAC中點.


(1)求直線與平面所成角的正弦值;
(2)上是否存在一點E,使得平面,若不存在,說明理由;若存在,確定點E的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線C,則( )

A.雙曲線C的離心率等于半焦距的長

B.雙曲線與雙曲線C有相同的漸近線

C.雙曲線C的一條準(zhǔn)線被圓x2y21截得的弦長為

D.直線ykxb(k,bR)與雙曲線C的公共點個數(shù)只可能為0,1,2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某社區(qū)有居民人,為了迎接第十一個“全民健身日”的到來,居委會從中隨機(jī)抽取了名居民,統(tǒng)計了他們本月參加戶外運動時間(單位:小時)的數(shù)據(jù),并將數(shù)據(jù)進(jìn)行整理,分為組:,,,得到如圖所示的頻率分布直方圖.

(Ⅰ)試估計該社區(qū)所有居民中,本月戶外運動時間不小于小時的人數(shù);

(Ⅱ)已知這名居民中恰有名女性的戶外運動時間在,現(xiàn)從戶外運動時間在的樣本對應(yīng)的居民中隨機(jī)抽取人,求至少抽到名女性的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)設(shè)函數(shù)圖象上不重合的兩點.證明:.(是直線的斜率)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正三棱錐,點、、、都在半徑為的球面上,若、、兩兩相互垂直,則球心到截面的距離為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一只昆蟲的產(chǎn)卵數(shù)與溫度有關(guān),現(xiàn)收集了6組觀測數(shù)據(jù)與下表中.由散點圖可以發(fā)現(xiàn)樣本點分布在某一指數(shù)函數(shù)曲線的周圍.

溫度

21

23

25

27

29

31

產(chǎn)卵數(shù)/

7

11

21

24

66

114

,經(jīng)計算有:

26

40.5

19.50

6928

526.60

70

1)試建立關(guān)于的回歸直線方程并寫出關(guān)于的回歸方程.

2)若通過人工培育且培育成本與溫度和產(chǎn)卵數(shù)的關(guān)系為(單位:萬元),則當(dāng)溫度為多少時,培育成本最。

注:對于一組具有線性相關(guān)關(guān)系的數(shù)據(jù),,,,其回歸直線的斜率和截距的最小二乘公式分別為.

查看答案和解析>>

同步練習(xí)冊答案