已知F1、F2是橢圓x2+
y2
2
=1的兩個焦點,AB是過焦點F1的一條動弦,求△ABF2的面積的最大值.
考點:橢圓的簡單性質
專題:圓錐曲線的定義、性質與方程
分析:當AB與橢圓長軸垂直時,△ABF2的面積取最大值,由此能求出結果.
解答: 解:∵F1、F2是橢圓x2+
y2
2
=1的兩個焦點,
∴F1(0,-1),a=
2
,b=c=1,
∵AB是過焦點F1的一條動弦,
∴將直線AB繞F1點旋轉,
根據(jù)橢圓的幾何性質,得:
當AB與橢圓長軸垂直時,△ABF2的面積取最大值,
∴△ABF2的面積的最大值S=
1
2
×
2b2
a
×2c
=
1
2
×
2
2
×2
=
2

∴△ABF2的面積的最大值是
2
點評:本題考查三角形面積的最大值的求法,是中檔題,解題時要認真審題,注意橢圓性質的靈活運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

lnx=2-ln3,則x=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=x+sinx,x∈[-π,π]的大致圖象是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在直四棱柱ABCD-A1B1C1D1中,底面ABCD是矩形,AB=1,BC=
2
,AA1=2,E是側棱BB1的中點.
(1)求證:A1E⊥平面AED;
(2)求二面角A-A1D-E的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“行通濟”是廣東佛山一帶在元宵節(jié)期間舉行的游玩祈;顒樱康竭@一天,家家戶戶都會扶老攜幼,自清晨到夜幕,舉著風車、搖著風鈴、拎著生菜浩浩蕩蕩地由北到南走過通濟橋,祈求來年平平安安、順順利利.為了了解不同年齡層次的人對這一傳統(tǒng)習俗的參與度,現(xiàn)隨機抽取年齡在20~80歲之間的60人,并按年齡層次[20,30),[30,40),[40,50),[50,60),[60,70),[70,80)繪制頻率分布直方圖如圖所示,其中參與了2014年“行通濟”活動的人數(shù)如下表.若規(guī)定年齡分布在[20,60)歲的為“中青年人”,60歲以上(含60歲)為“老年人”.
年齡(歲) 參與人數(shù)
[20,30) 3
[30,40) 2
[40,50) 3
[50,60) 4
[60,70) 5
[70,80] 3
(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并判斷能否有99%的把握認為“老年人”比“中青年人”更認同“行通濟”這一民俗?
“老年人”人數(shù) “中青年人”人數(shù) 合計
有參與
 
 
 
沒有參與
 
 
 
合計
 
 
 
(2)從上述2×2列聯(lián)表“老年人”和“中青年人”兩大組中,用分層抽樣的方法抽取5人,再從這5人中任意抽取兩人,求恰好有一人是“老年人”的概率
參考公式:k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d
下面的臨界值表供參考:
P(K2>k) 0.10 0.05 0.025 0.010
k 2.706 3.841 5.024 6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某校為了解學生的視力情況,隨機抽查了一部分學生視力,將調查結果分組,分組區(qū)間為(3.9,4.2],(4.2,4.5],…,(5.1,5.4].經過數(shù)據(jù)處理,得到頻率分布表:
分組 頻數(shù) 頻率
(3.9,4.2] 1 0.05
(4.2,4.5] 5 0.25
(4.5,4.8] 9 x
(4.8,5.1] y z
(5.1,5.4] 1 0.05
合計 n 1.00
(Ⅰ)求頻率分布表中未知量n、x、y、z的值;
(Ⅱ)從樣本中隨機抽取2人,其中視力超過4.8的人數(shù)記為ξ,求ξ的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某企業(yè)進行技術改造期間,第一年有在崗員工300人,平均每個員工創(chuàng)收利潤1萬元,預測以后每年平均每個員工創(chuàng)收利潤都比上一年增加0.2萬元,當該企業(yè)在崗員工人數(shù)每年都比上一年減少10%.
(1)設第n年平均每個員工創(chuàng)收利潤為an萬元,在崗員工為bn人,求an,bn的表達式;
(2)依上述預測,第幾年該企業(yè)員工創(chuàng)收利潤最多?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=(x+a)ex
(1)若y=f(x)在x=0處的切線與直線x-2y-2014=0垂直,求y=f(x)的極值;
(2)設g(x)=x2-4x-3,若對任意的x∈[0,1],都存在s,t∈[-1,3]使得g(s)≤f(x)≤g(t)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

曲線y=
1
2
x2+2x+1與直線y=x+2垂直的切線方程是
 

查看答案和解析>>

同步練習冊答案