【題目】已知函數(shù),其中.
Ⅰ當(dāng)時(shí),恒成立,求a的取值范圍;
Ⅱ設(shè)是定義在上的函數(shù),在內(nèi)任取個(gè)數(shù),,,,,設(shè),令,,如果存在一個(gè)常數(shù),使得恒成立,則稱函數(shù)在區(qū)間上的具有性質(zhì)P.試判斷函數(shù)在區(qū)間上是否具有性質(zhì)P?若具有性質(zhì)P,請(qǐng)求出M的最小值;若不具有性質(zhì)P,請(qǐng)說(shuō)明理由.注:
【答案】Ⅰ;Ⅱ具有,最小值為3
【解析】
Ⅰ當(dāng)時(shí),恒成立,可轉(zhuǎn)化為恒成立,進(jìn)而轉(zhuǎn)化為函數(shù)最值問(wèn)題解決;
Ⅱ先研究函數(shù)在區(qū)間上的單調(diào)性,然后對(duì)內(nèi)的任意一個(gè)取數(shù)方法,根據(jù)性質(zhì)P的定義分兩種情況討論即可:①存在某一個(gè)整數(shù)2,3,,,使得時(shí),②當(dāng)對(duì)于任意的1,2,3,,,時(shí),,利用函數(shù)的單調(diào)性去絕對(duì)值,化簡(jiǎn),求的最小值.
Ⅰ當(dāng)時(shí),恒成立,即時(shí),恒成立,
因?yàn)?/span>,所以恒成立,即在區(qū)間上恒成立,
所以,即,
所以即a的取值范圍是.
Ⅱ由已知,可知在上單調(diào)遞增,在上單調(diào)遞減,
對(duì)于內(nèi)的任意一個(gè)取數(shù)方法,
當(dāng)存在某一個(gè)整數(shù)2,3,,,使得時(shí),
.
當(dāng)對(duì)于任意的1,2,3,,,時(shí),則存在一個(gè)實(shí)數(shù)k使得,
此時(shí)
,
當(dāng)時(shí),式,
當(dāng)時(shí),式,
當(dāng)時(shí),式.
綜上,對(duì)于內(nèi)的任意一個(gè)取數(shù)方法,均有.
所以存在常數(shù),使恒成立,
所以函數(shù)在區(qū)間上具有性質(zhì)P.
此時(shí)M的最小值為3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,MN分別是邊長(zhǎng)為1的正方形ABCD的邊BCCD的中點(diǎn),將正方形沿對(duì)角線AC折起,使點(diǎn)D不在平面ABC內(nèi),則在翻折過(guò)程中,有以下結(jié)論:
①異面直線AC與BD所成的角為定值.
②存在某個(gè)位置,使得直線AD與直線BC垂直.
③存在某個(gè)位置,使得直線MN與平面ABC所成的角為45°.
④三棱錐M-ACN體積的最大值為.
以上所有正確結(jié)論的序號(hào)是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地空氣中出現(xiàn)污染,須噴灑一定量的去污劑進(jìn)行處理.據(jù)測(cè)算,每噴灑1個(gè)單位的去污劑,空氣中釋放的濃度y(單位:毫克/立方米)隨著時(shí)間x(單位:天)變化的函數(shù)關(guān)系式近似為,若多次噴灑,則某一時(shí)刻空氣中的去污劑濃度為每次投放的去污劑在相應(yīng)時(shí)刻所釋放的濃度之和.由實(shí)驗(yàn)知,當(dāng)空氣中去污劑的濃度不低于4(毫克/立方米)時(shí),它才能起到去污作用.
(Ⅰ)若一次噴灑4個(gè)單位的去污劑,則去污時(shí)間可達(dá)幾天?
(Ⅱ)若第一次噴灑2個(gè)單位的去污劑,6天后再噴灑 個(gè)單位的去污劑,要使接下來(lái)的4天中能夠持續(xù)有效去污,試求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩位同學(xué)參加數(shù)學(xué)應(yīng)用知識(shí)競(jìng)賽培訓(xùn),現(xiàn)分別從他們?cè)谂嘤?xùn)期間參加的若干次測(cè)試成績(jī)中隨機(jī)抽取8次,記錄如下:
(Ⅰ)分別估計(jì)甲、乙兩名同學(xué)在培訓(xùn)期間所有測(cè)試成績(jī)的平均分;
(Ⅱ)從上圖中甲、乙兩名同學(xué)高于85分的成績(jī)中各選一個(gè)成績(jī)作為參考,求甲、乙兩人成績(jī)都在90分以上的概率;
(Ⅲ)現(xiàn)要從甲、乙中選派一人參加正式比賽,根據(jù)所抽取的兩組數(shù)據(jù)分析,你認(rèn)為選派哪位同學(xué)參加較為合適?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ln(x+1)+ax2-x.
(Ⅰ)討論f(x)在[0,+∞)上的單調(diào)性;
(Ⅱ)若函數(shù)g(x)=f(x)+x有兩個(gè)極值點(diǎn)x1,x2,且x1<x2,求證:g(x2)>-ln2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知角α的頂點(diǎn)與原點(diǎn)重合,始邊與x軸的正半軸重合,終邊過(guò)點(diǎn)P(-2,-1).
(1)求cos(2α+)的值;
(2)若角β滿足tanβ=2,求tan(2α+β)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量函數(shù)的最小正周期為.
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)在中,角的對(duì)邊分別是,且滿足,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】開發(fā)商現(xiàn)有四棟樓A,B,C,D.樓D位于BC間,到樓A,B,C的距離分別為,,,且從樓D看樓A,B的視角為.如圖所示,不計(jì)樓大小和高度.
(1)試求從樓A看樓B,C視角大;
(2)開發(fā)商為謀求更大開發(fā)區(qū)域,擬再建三棟樓M,P,N,形成以樓AMPN為頂點(diǎn)的矩形開發(fā)區(qū)域,規(guī)劃要求樓B,C分別位于樓MP和樓PN間,如圖所示,記,當(dāng)等于多少時(shí),矩形開發(fā)區(qū)域面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】要建造一段長(zhǎng)的高速公路,工程隊(duì)需要把380名施工人員分為兩組,一組負(fù)責(zé)的軟土地帶的施工,另一組完成剩下的硬土地帶的施工.根據(jù)工程技術(shù)人員的測(cè)算,軟、硬地帶每米公路的工程量分別為50人·天和30人·天.
(1)設(shè)參與軟土地帶工作的人數(shù)為人,試分別寫出在軟、硬地帶筑路的時(shí)間關(guān)于的函數(shù)表達(dá)式;
(2)問(wèn)如何安排兩組的人數(shù),才能使全隊(duì)筑路工期最短?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com