命題p:x=2,命題q:(x-2)(x+3)=0,則p是q的


  1. A.
    充分不必要條件
  2. B.
    必要不充分條件
  3. C.
    充要條件
  4. D.
    既不充分也不必要條件
A
分析:由命題p成立,能推出命題q成立,但由命題q成立不能推出命題p成立,由此得出結(jié)論.
解答:由命題p:x=2成立,能推出命題q:(x-2)(x+3)=0成立,故充分性成立.
但由命題q:(x-2)(x+3)=0成立,可得x=2或x=3,不能推出命題p成立,故必要性不成立.
故p是q的充分不必要條件,
故選A.
點(diǎn)評(píng):本題主要考查充分條件、必要條件、充要條件的定義,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題p:x=2,命題q:(x-2)(x+3)=0,則p是q的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①若命題p:“x>1”是真命題,則命題q:“x≥1”是真命題;
②函數(shù)y=2-x(x>0)的反函數(shù)是y=-log2x(x>0);
③已知y=f(2x+1)是偶函數(shù),則y=f(2x)+1的對(duì)稱軸是x=-
12
;
④條件p:a<x<a+1是條件q:2<x<5的充分不必要條件,則實(shí)數(shù)a的取值范圍是[2,4];
其中所有真命題的序號(hào)是
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理科)已知命題p:x≠2,命題q:x2≠4,則p是q的
必要不充分
必要不充分
條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:x≥2;命題q:0<x<4,若命題p∨q是真命題,命題?q是真命題,則實(shí)數(shù)x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列有關(guān)命題的敘述,錯(cuò)誤的個(gè)數(shù)為( 。
①若p∨q為真命題,則P∧Q為真命題
②“x>5”是“x2-4x-5>0”的充分不必要條件
③命題p:?x∈R,使得x2+x-1<0,則-p:?x∈R,使得x2+x-1≥0
④命題“若x2-3x+2=0,則x=1或x=2”的逆否命題為“若x≠1或x≠2,則x2-3x+2≠0”
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案