分析 (1)求出函數(shù)f(x)的定義域,當(dāng)m=0時,求出f′(x)=-$\frac{lnx}{{x}^{2}}$.判斷導(dǎo)函數(shù)的符號,求解函數(shù)的極值,列出不等式,即可推出結(jié)果.
(2)當(dāng)x≥1時,不等式x(x+1)f(x)+m≥(k-m)x恒成立,推出$\frac{x+11+lnx}{x}$≥k對x∈[1,+∞)恒成立,記g(x)=$\frac{x+11+lnx}{x}$,求出g′(x),利用導(dǎo)函數(shù)的符號,判斷單調(diào)性然后求解最值.推出k的值.
解答 解:(1)函數(shù)f(x)的定義域?yàn)椋?,+∞),
當(dāng)m=0時,f(x)=$\frac{1+lnx}{x}$,x>0,∴f′(x)=-$\frac{lnx}{{x}^{2}}$.
當(dāng)0<x<1時,f′(x)>0;當(dāng)x>1時,f′(x)<0.
所以f(x)在(0,1)上單調(diào)遞增;在(1,+∞)上單調(diào)遞減,
所以函數(shù)f(x)在x=1處取得極大值.
因?yàn)楹瘮?shù)f(x)在區(qū)間(a,a+$\frac{1}{2}$)(其中a>0)上存在極值,
所以$\left\{\begin{array}{l}{a<1}\\{a+\frac{1}{2}>1}\end{array}\right.$,解得$\frac{1}{2}$<a<1.(6分)
(2)當(dāng)x≥1時,不等式x(x+1)f(x)+m≥(k-m)x恒成立,
即x(x+1)=$\frac{1-m+lnx}{x}$+m≥(k-m)x恒成立,∴$\frac{x+11+lnx}{x}$≥k對x∈[1,+∞)恒成立,
記g(x)=$\frac{x+11+lnx}{x}$,
所以g′(x)=$\frac{(x+11+lnx)′x-x+11+lnx}{{x}^{2}}$=$\frac{x-lnx}{{x}^{2}}$.
令h(x)=x-ln x,則h′(x)=1-$\frac{1}{x}$,
∵x≥1,∴h′(x)≥0,
∴h(x)在[1,+∞)上單調(diào)遞增,∴[h(x)]min=h(1)=1>0,從而g′(x)>0,
故g(x)在[1,+∞)上也單調(diào)遞增,[g(x)]min=g(1)=2,
∴k≤2.(12分)
點(diǎn)評 本題考查函數(shù)的導(dǎo)數(shù),求解函數(shù)的極值與最值,考查轉(zhuǎn)化思想以及計(jì)算能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,4) | B. | (-1,0) | C. | (0,3) | D. | (3,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b>2 | B. | a>3,-3<b<-1 | ||
C. | a<0<b,a+b>0 | D. | a>2,-2<b<0,a-b>4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | $\frac{25}{3}$ | C. | -89 | D. | $\frac{17}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com