4.在△ABC中,角A,B,C的對邊分別是a,b,c,滿足2acosC+c=2b.
(1)求角A的大;
(2)若a=1,求△ABC面積的最大值.

分析 (1)在△ABC中,利用正弦定理求得2sinAcosC+sinC=2sinB,再由sinB=sin(A+C),求得cosA=$\frac{1}{2}$,可得A的值.
(2)利用余弦定理、基本不等式求得 bc≤1,再由三角形面積公式求得它的最大值.

解答 (本題滿分為10分)
解:(1)在△ABC中,∵2acosC+c=2b,
∴由正弦定理可得:2sinAcosC+sinC=2sinB.-----(1分)
又sinB=sin(A+C),∴2sinAcosC+sinC=2sinAcosC+2cosAsinC,
∴sinC=2cosAsinC.-----(3分)
∵sinC≠0,
∴cosA=$\frac{1}{2}$,
∵A是三角形的內(nèi)角,
∴A=$\frac{π}{3}$.--(5分)
(2)∵a2=b2+c2-2bccosA=b2+c2-bc≥2bc-bc=bc,
∴bc≤1.-----(8分)
∴S=$\frac{1}{2}$bcsinA≤$\frac{1}{2}$×1×$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{4}$,即△ABC面積的最大值為$\frac{\sqrt{3}}{4}$.-----(10分)

點評 本題主要考查三角函數(shù)的恒等變換及化簡求值,正弦定理、余弦定理、基本不等式的應(yīng)用,根據(jù)三角函數(shù)的值求角,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若拋物線y2=2px上一點P(2,y0)到其準(zhǔn)線的距離為4,則拋物線的標(biāo)準(zhǔn)方程為y2=8x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)f(x)為定義在R上的可導(dǎo)函數(shù),e為自然對數(shù)的底數(shù).若f'(x)lnx>$\frac{f(x)}{x}$,則( 。
A.f(2)<f(e)ln2,2f(e)>f(e2B.f(2)<f(e)ln2,2f(e)<f(e2
C.f(2)>f(e)ln2,2f(e)<f(e2D.f(2)>f(e)ln2,2f(e)>f(e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知橢圓$\frac{x^2}{100}$+$\frac{y^2}{64}$=1的左焦點為F,一動直線與橢圓交于點M、N,則△FMN的周長的最大值為(  )
A.16B.20C.32D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.從5位男同學(xué)和4位女同學(xué)中選出3位同學(xué)分別擔(dān)任數(shù)、語、外三科的科代表,要求選出的3位同學(xué)中男女都要有,則不同的選派方案共有(  )
A.210種B.630種C.420種D.840種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在△ABC中,A,B,C是三角形的三內(nèi)角,a,b,c是三內(nèi)角對應(yīng)的三邊,已知b2+c2-a2=bc.
(1)求∠A;
(2)若a=$\sqrt{7}$,b+c=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知定點M(-$\sqrt{2},0}$),N是圓C:(x-$\sqrt{2}}$)2+y2=16(C為圓心) 上的動點,MN的垂直平分線與NC交于點E.
(1)求動點E的軌跡方程C1;
(2)直線l與軌跡C1交于P,Q兩點,與拋物線C2:x2=4y交于A,B兩點,且拋物線C2在點A,B處的切線垂直相交于S,設(shè)點S到直線l的距離為d,試問:是否存在直線l,使得d=$\sqrt{|{AB}|•|{PQ}|}$?若存在,求直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.為了解某校學(xué)生暑期參加體育鍛煉的情況,對某班M名學(xué)生暑期參加體育鍛煉的次數(shù)進行了統(tǒng)計,得到如表的頻率分布表與如圖直方圖:
組別鍛煉次數(shù)頻數(shù)(人)頻率
1[2,6)20.04
2[6,10)110.22
3[10,14)16c
4[14,18)150.30
5[18,22)de
6[22,26]20.04
合計M1.00
(1)求頻率分布表中M、d、e及頻率分布直方圖中f的值;
(2)求參加鍛煉次數(shù)的眾數(shù)(直接寫出答案,不要求計算過程);
(3)若參加鍛煉次數(shù)不少于18次為及格,估計這次體育鍛煉的及格率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)命題p:方程$\frac{{x}^{2}}{1-m}$+$\frac{{y}^{2}}{m+2}$=1表示雙曲線;命題q:$\frac{{x}^{2}}{2m}$+$\frac{{y}^{2}}{2-m}$=1表示焦點在x軸上的橢圓,若p∧q是假命題,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案