過點(diǎn)A(a,0)且與極軸相交成60°角的直線的極坐標(biāo)方程是
 
考點(diǎn):簡單曲線的極坐標(biāo)方程
專題:坐標(biāo)系和參數(shù)方程
分析:先由條件求得直線的參數(shù)方程,再把參數(shù)方程消去參數(shù)化為直角坐標(biāo)方程、再把直角坐標(biāo)方程化為極坐標(biāo)方程.
解答: 解:由題意可得直線的參數(shù)方程為
x=a+tcos60°
y=0+tsin60°
 (t為參數(shù)),
再把它化為直角坐標(biāo)方程為
3
x-y-
3
a=0.
再把它化為極坐標(biāo)方程為
3
ρcosθ-ρsinθ=
3
a,即 2ρsin(
π
3
-θ)=
3
a,
故答案為:2ρsin(
π
3
-θ)=
3
a.
點(diǎn)評:本題主要考查直線的參數(shù)方程,把參數(shù)方程化為直角坐標(biāo)方程、把直角坐標(biāo)方程化為極坐標(biāo)方程的方法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P為橢圓上任意一點(diǎn),∠F1PF2=α,求SF1PF2,|PF1||PF2|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)的單調(diào)區(qū)間f(x)=-
1
3
ax3+x2+1(a≤0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖放置的邊長為1的正方形DEFG的頂點(diǎn)D,G分別在Rt△ABC的兩直角邊所在的直線上滑動,則
CE
CF
的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有5個(gè)不同的小球,其中紅色球有2個(gè),黃色球有2個(gè),藍(lán)色球有1個(gè),若將其隨機(jī)的排成一列,但要求同一顏色的小球不相鄰,則不同的排列種數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某程序框圖如圖所示,現(xiàn)輸入如下四個(gè)函數(shù):f(x)=x2,f(x)=
1
x
,f(x)=ex,f(x)=sinx,則可以輸出的函數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若下表中每行、每列的數(shù)都成等差數(shù)列,則位于表中的第n行第n+1列的數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有紅、黃、藍(lán)三種卡片各4張,每種卡片上分別寫上1、2、3、4四個(gè)數(shù)字,若從中任取3張,要求三種顏色齊全且數(shù)字均不相同,則取法總數(shù)為
 
種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x1,x2∈(0,π)且x1<x2,則下列五個(gè)不等式:
sinx1
x1
sinx2
x2

②sinx1<sinx2;  
1
2
(sinx1+sinx2)<sin(
x1+x2
2
);
④sin
x1
2
>sin
x2
2
;  
sin
x1
2
x1
sin
x2
2
x2
.  
其中正確的序號是
 

查看答案和解析>>

同步練習(xí)冊答案