分析 (1)可設(shè)出直線的方程令y=0和x=0求出A和B兩點坐標(biāo),然后表示出面積的關(guān)系式,求出面積最小時k的值,然后代入得到直線l的方程即可;
(2)|MA|•|MB|=$\sqrt{\frac{1}{{k}^{2}}+1}•\sqrt{4+4{k}^{2}}$=$\frac{2(1+{k}^{2})}{|k|}$=2[-$\frac{1}{k}$+(-k)],利用基本不等式,即可得出結(jié)論.
解答 解:設(shè)直線l:y-1=k(x-2)(k<0),則有A(2-$\frac{1}{k}$,0)、B(0,1-2k).
(1)由三角形面積S=$\frac{1}{2}$(1-2k)(2-$\frac{1}{k}$),得4k2+2(S-2)k+1=0.
因為△=4(S-2)2-16≥0,
所以S≥4或S≤0(舍去).
又當(dāng)S≥4時,k<0,
所以△AOB面積的最小值為4.
此時,由4k2+4k+1=0,得k=-$\frac{1}{2}$.
所以直線方程為y-1=-$\frac{1}{2}$(x-2),即x+2y-4=0.
(2)因為|MA|•|MB|=$\sqrt{\frac{1}{{k}^{2}}+1}•\sqrt{4+4{k}^{2}}$=$\frac{2(1+{k}^{2})}{|k|}$=2[-$\frac{1}{k}$+(-k)]≥4(因為k<0),
當(dāng)且僅當(dāng)-k=-$\frac{1}{k}$,即k=-1時,|MA|•|MB|取最小值4.此時直線方程為x+y-3=0.
點評 考查學(xué)生會求直線與x軸、y軸的截距,會利用基本不等式求面積的最小值,會寫出直線的一般式方程.
科目:高中數(shù)學(xué) 來源: 題型:解答題
X | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{5}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com