已知橢圓:的左焦點為,且過點.

(1)求橢圓的方程;
(2)設過點P(-2,0)的直線與橢圓E交于A、B兩點,且滿足.
①若,求的值;
②若M、N分別為橢圓E的左、右頂點,證明:

(1)  ;(2)參考解析

解析試題分析:(1)因為由橢圓:的左焦點為,即.由點到兩焦點的距離和可求出橢圓的長軸.從而可以求出橢圓的方程.
(2)(1)通過假設直線的方程聯(lián)立橢圓方程消去y可得一個一元二次方程,由韋達定理即可求出直線的斜率k的值,從而解出A,B兩點的坐標,即可得結論.(2)分別求兩直線的斜率和,利用韋達定理得到的關系式即可證明斜率和為零.即可得到結論.
試題解析:(1)因為焦點為, C=1,又橢圓過,
取橢圓的右焦點,,由,
所以橢圓E的方程為 
(2)①設,,

顯然直線斜率存在,設直線方程為 
得: 
,,
,
,符合,由對稱性不妨設,
解得, 
②若,則直線的方程為,
代入得, 不滿足題意,同理 
,,


考點:1.橢圓的性質(zhì).2.直線與橢圓的位置關系.3.韋達定理.4.幾何問題構建代數(shù)方法解決.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(13分)已知圓Ox2y2=3的半徑等于橢圓E=1(a>b>0)的短半軸長,橢圓E的右焦點F在圓O內(nèi),且到直線lyx的距離為,點M是直線l與圓O的公共點,設直線l交橢圓E于不同的兩點A(x1,y1),B(x2y2).

(1)求橢圓E的方程;
(2)求證:|AF|-|BF|=|BM|-|AM|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的離心率與雙曲線的離心率互為倒數(shù),直線與以原點為圓心,以橢圓的短半軸長為半徑的圓相切.
(1)求橢圓的方程;
(2)設橢圓的左焦點為,右焦點為,直線過點且垂直于橢圓的長軸,動直線垂直于點,線段垂直平分線交于點,求點的軌跡的方程;
(3)設第(2)問中的軸交于點,不同的兩點上,且滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知分別是橢圓的左,右頂點,點在橢圓 上,且直線與直線的斜率之積為

(1)求橢圓的標準方程;
(2)點為橢圓上除長軸端點外的任一點,直線,與橢圓的右準線分別交于點,
①在軸上是否存在一個定點,使得?若存在,求點的坐標;若不存在,說明理由;
②已知常數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知雙曲線x2-y2=2若直線n的斜率為2 ,直線n與雙曲線相交于A、B兩點,線段AB的中點為P,
(1)求點P的坐標(x,y)滿足的方程(不要求寫出變量的取值范圍);
(2)過雙曲線的左焦點F1,作傾斜角為的直線m交雙曲線于M、N兩點,期中,F(xiàn)2是雙曲線的右焦點,求△F2MN的面積S關于傾斜角的表達式。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C=1(a>b>0)的離心率與等軸雙曲線的離心率互為倒數(shù)關系,直線lxy=0與以原點為圓心, 以橢圓C的短半軸長為半徑的圓相切.
(1)求橢圓C的方程;
(2)設M是橢圓的上頂點,過點M分別作直線MA,MB交橢圓于AB兩點,設兩直線的斜率分別為k1k2,且k1k2=4,證明:直線AB過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,動點滿足:點到定點與到軸的距離之差為.記動點的軌跡為曲線.
(1)求曲線的軌跡方程;
(2)過點的直線交曲線、兩點,過點和原點的直線交直線于點,求證:直線平行于軸.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線的頂點在坐標原點,焦點軸上,拋物線上的點的距離為2,且的橫坐標為1.直線與拋物線交于,兩點.
(1)求拋物線的方程;
(2)當直線的傾斜角之和為時,證明直線過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓上的點到左右兩焦點的距離之和為,離心率為.
(1)求橢圓的方程;
(2)過右焦點的直線交橢圓于兩點,若軸上一點滿足,求直線的斜率的值.

查看答案和解析>>

同步練習冊答案