19.如圖所示是一個幾何體的三視圖,其中側視圖是一個邊長為1的正三角形,俯視圖是兩個邊長為1的正三角形拼成的菱形,則其體積為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.1

分析 由三視圖可知:該幾何體是由左右兩個對稱的三棱錐組成的.根據(jù)已知數(shù)據(jù)即可得出.

解答 解:由三視圖可知:該幾何體是由左右兩個對稱的三棱錐組成的.
該幾何體的體積=2×$\frac{1}{2}×1×\frac{\sqrt{3}}{2}×\sqrt{3}$×$\frac{1}{3}$=$\frac{1}{2}$.
故選:C.

點評 本題考查了三視圖的有關計算、三棱錐棱錐的體積計算公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.某工廠利用隨機數(shù)表對生產(chǎn)的700個零件進行抽樣測試,先將700個零件進行編號001,002,…,699,700.從中抽取70個樣本,如圖提供隨機數(shù)表的第4行到第6行,若從表中第5行第6列開始向右讀取數(shù)據(jù),則得到的第5個樣本編號是( 。
A.607B.328C.253D.007

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知a=-2${∫}_{0}^{π}$sin(x+$\frac{π}{3}$)dx,求二項式(x2+$\frac{a}{x}$)5的展開式中x的系數(shù)及展開式中各項系數(shù)之和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知拋物線y=$\frac{1}{8}$x2與雙曲線$\frac{{y}^{2}}{{a}^{2}}$-x2=1(a>0)有共同的焦點F,則雙曲線的漸近線方程為y=$±\sqrt{3}x$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,在棱長為a的正方形OABC-O1A1B1C1中,點E,F(xiàn)分別是棱AB,BC上的動點,且AE=BF.
(Ⅰ)求證:A1F⊥C1E;
(Ⅱ)當三棱錐B1-EFB的體積取得最大值時,求二面角B-B1E-F的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.某事業(yè)單位共公開招聘一名職員,從筆試成績合格的6(編號分別為1-6)名應試者中通過面試選聘一名.甲、乙、丙、丁四人對入選者進行預測.甲:不可能是6號;乙:不是4號就是5號;丙:是1、2、3號中的一名;。翰豢赡苁1、2、3號.已知四人中只有一人預測正確,那么入選者是6號.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.設函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{-x},x<1}\\{lo{g}_{2}x,x≥1}\end{array}\right.$ 那么f[f(-$\frac{1}{2}$)]=$\frac{1}{2}$;若函數(shù)y=f(x)-k有且只有兩個零點,則實數(shù)k的取值范圍是($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知f(x)=$\left\{\begin{array}{l}{1-{x}^{2}(x≤1)}\\{{x}^{2}-2x-2(x>1)}\end{array}\right.$,則f[$\frac{1}{f(2)}$]=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如表數(shù)據(jù):
單價x(元)34567
銷量y(件)7872696863
由表中數(shù)據(jù),求得線性回歸直線方程為$\hat y$=-6x+$\hat a$.若在這些樣本點中任取一點,則它在回歸直線左下方的概率為( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

同步練習冊答案