(2009•成都二模)質(zhì)檢部門將對(duì)12個(gè)廠家生產(chǎn)的嬰幼兒奶粉進(jìn)行質(zhì)量抽檢,若被抽檢廠家的奶粉經(jīng)檢驗(yàn)合格,則該廠家的奶粉即可投放市場(chǎng);若檢驗(yàn)不合格,則該廠家的奶粉將不能投放市場(chǎng)且作廢品處理.假定這12個(gè)廠家中只有2個(gè)廠家的奶粉存在質(zhì)量問題(即檢驗(yàn)不能合格),但不知道是哪兩個(gè)廠家的奶粉.
(I)從中任意選取3個(gè)廠家的奶粉進(jìn)行檢驗(yàn),求至少有2個(gè)廠家的奶粉檢驗(yàn)合格的概率;
(Ⅱ)每次從中任意抽取一個(gè)廠家的奶粉進(jìn)行檢驗(yàn)(抽檢不重復(fù)),記首次抽檢到合格奶粉時(shí)已經(jīng)檢驗(yàn)出奶粉存在質(zhì)量問題的廠家個(gè)數(shù)為隨即變量ξ,求ξ的分布列及數(shù)學(xué)期望.
分析:(I)根據(jù)隨意任意選取3個(gè)廠家進(jìn)行抽檢,至少有2個(gè)廠家的奶粉檢驗(yàn)合格有兩種情形;根據(jù)等可能事件的概率公式進(jìn)行計(jì)算,最后求出它們的和得到結(jié)果.
(II)由題意得到隨即變量ξ的取值為0,1,2.根據(jù)變量對(duì)應(yīng)的事件求出概率,寫出分布列和期望.
解答:解:(I)任意選取3個(gè)廠家進(jìn)行抽檢,至少有2個(gè)廠家的奶粉檢驗(yàn)合格有兩種情形;
一是選取抽檢的3個(gè)廠家中,恰有2個(gè)廠家的奶粉合格,此時(shí)的概率為
P1=
C
2
10
C
1
2
C
3
12
=
9
22

二是選取抽檢的3個(gè)廠家的奶粉均合格,此時(shí)的概率為P2=
C
3
10
C
3
12
=
12
22
;
故所求的概率為P=P1+P2=
21
22

(Ⅱ)由題意,隨即變量ξ的取值為0,1,2.
∴P(ξ=0)=
10
12
=
5
6
,
P(ξ=1)=
2
12
×
10
11
=
5
33
,
P(ξ=2)=
2
12
×
1
11
=
1
66
,
∴ξ的分布列為
ξ 0 1 2
P
5
6
5
33
1
66
∴ξ的數(shù)學(xué)期望Eξ=0×
5
6
+1×
5
33
+2×
1
66
=
2
11
點(diǎn)評(píng):本題主要考查等可能事件的概率,相互獨(dú)立事件、互斥事件的概率,離散型隨機(jī)變量的分布列及數(shù)學(xué)期望等基礎(chǔ)知識(shí),同時(shí)考查運(yùn)用概率知識(shí)分析問題和解決問題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•成都二模)在△ABC中,a、b、c分別是三內(nèi)角A、B、C所對(duì)邊的長(zhǎng),若bsinA=asinC,則△ABC的形狀( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•成都二模)已知集合P={x|x2-2x+1=0,x∈R},則集合P的子集個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•成都二模)化簡(jiǎn)復(fù)數(shù)i3-
1+i
1-i
的結(jié)果是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•成都二模)已知函數(shù)f(x)的定義域?yàn)閇0,1),則函數(shù)f(1-x)的定義域?yàn)椋ā 。?/div>

查看答案和解析>>

同步練習(xí)冊(cè)答案