【題目】假設(shè)在5秒內(nèi)的任何時刻,兩條不相關(guān)的短信機會均等地進入同一部手機,若這兩條短信進入手機的時間之差小于2秒,手機就會受到干擾,則手機受到干擾的概率為_________________
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班50位學(xué)生期中考試數(shù)學(xué)成績的頻率直方分布圖如圖所示,其中成績分組區(qū)間是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中x的值;
(2)從成績不低于80分的學(xué)生中隨機選取2人,該2人中成績在90分以上(含90分)的人數(shù)記為ξ,求ξ的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A是由m×n個實數(shù)組成的m行n列的數(shù)表,滿足:每個數(shù)的絕對值不大于1,且所有數(shù)的和為零,記s(m,n)為所有這樣的數(shù)表構(gòu)成的集合.對于A∈S(m,n),記ri(A)為A的第ⅰ行各數(shù)之和(1≤ⅰ≤m),Cj(A)為A的第j列各數(shù)之和(1≤j≤n);記K(A)為|r1(A)|,|R2(A)|,…,|Rm(A)|,|C1(A)|,|C2(A)|,…,|Cn(A)|中的最小值.
(1)如表A,求K(A)的值;
1 | 1 | ﹣0.8 |
0.1 | ﹣0.3 | ﹣1 |
(2)設(shè)數(shù)表A∈S(2,3)形如
1 | 1 | c |
a | b | ﹣1 |
求K(A)的最大值;
(3)給定正整數(shù)t,對于所有的A∈S(2,2t+1),求K(A)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為正方形.PD⊥平面ABCD,∠DPC=30°,AF⊥PC于點F,F(xiàn)E∥CD,交PD于點E.
(1)證明:CF⊥平面ADF;
(2)求二面角D﹣AF﹣E的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)D是函數(shù)y=f(x)定義域內(nèi)的一個區(qū)間,若存在x0∈D,使f(x0)=﹣x0 , 則稱x0是f(x)的一個“次不動點”,也稱f(x)在區(qū)間D上存在次不動點.若函數(shù)f(x)=ax2﹣3x﹣a+ 在區(qū)間[1,4]上存在次不動點,則實數(shù)a的取值范圍是( )
A.(﹣∞,0)
B.(0, )
C.[ ,+∞)
D.(﹣∞, ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sinxcos(x﹣ )+cos2x﹣ .
(1)求函數(shù)f(x)的最大值,并寫出f(x)取最大值x時的取值集合;
(2)若f(x0)= ,x0∈[ , ],求cos2x0的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等差數(shù)列{an}中,Sn為其前n項和,已知a2=2,S5=15,數(shù)列{bn},b1=1,對任意n∈N+滿足bn+1=2bn+1.
(1)數(shù)列{an}和{bn}的通項公式;
(2)設(shè)cn= ,設(shè)數(shù)列{cn}的前n項和Tn , 證明:Tn<2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com