本小題滿分12分)設(shè)a、b、c成等比數(shù)列,非零實(shí)數(shù)x,y分別是a與b, b與c的等差中項(xiàng)。
(1)已知①a=1、b=2、c=4,試計(jì)算的值;
②a=-1、b= 、c="-" ,試計(jì)算的值
(2)試推測與2的大小關(guān)系,并證明你的結(jié)論。

(1)①=2  ②=2  (2)

解析試題分析:(1)①x=,y=3,∴=2      
②x= ,y= ,∴=2         
(2)由(1)推測=2          
證明:∵a、b、c成等比數(shù)列,∴="ac"
∵實(shí)數(shù)x,y分別是a與b, b與c的等差中項(xiàng)。∴x=,y=    
=
=
=
考點(diǎn):等差數(shù)列與等比數(shù)列的綜合.
點(diǎn)評: 此題考查學(xué)生靈活運(yùn)用等差數(shù)列及等比數(shù)列的性質(zhì)進(jìn)行證明以及分析法的應(yīng)用,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列的公差大于0,且是方程的兩根,數(shù)列的前項(xiàng)和為,.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列是等差數(shù)列,且滿足:,;數(shù)列滿足 
(1)求;
(2)記數(shù)列,若的前項(xiàng)和為,求證

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,已知的等比中項(xiàng)為,的等差中項(xiàng)為1,求等差數(shù)列{an}的通項(xiàng)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題共13分)
數(shù)列{}中,,,且滿足
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知等差數(shù)列的公差, 是等比數(shù)列,又
(1)求數(shù)列及數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列是有窮等差數(shù)列,給出下面數(shù)表:
              ……             第1行
      ……           第2行
  …       …     …
…        …
…                       第n行
上表共有行,其中第1行的個數(shù)為,從第二行起,每行中的每一個數(shù)都等于它肩上兩數(shù)之和.記表中各行的數(shù)的平均數(shù)(按自上而下的順序)分別為
(1)求證:數(shù)列成等比數(shù)列;
(2)若,求和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分16分)
已知等差數(shù)列的前項(xiàng)和為,且,數(shù)列滿足:
,
(1)求數(shù)列、的通項(xiàng)公式;
(2)設(shè),證明: 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知是首項(xiàng)為,公差為的等差數(shù)列,的前項(xiàng)和.
(I)求通項(xiàng)
(II)設(shè)是首項(xiàng)為1,公比為3的等比數(shù)列,求數(shù)列的通項(xiàng)公式及其前項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊答案