10.已知x與y之間的幾組數(shù)據(jù)如表:
x 345 6
y2.5344.5
假設根據(jù)上表數(shù)據(jù)所得線性回歸方程為$\widehat{y}$=$\widehat$x+<“m“:math xmlns:dsi='http://www.dessci.com/uri/2003/MathML'dsi:zoomscale='150'dsi:_mathzoomed='1'style='CURSOR:pointer; DISPLAY:inline-block'>a^$\widehat{a}$,根據(jù)中間兩組數(shù)據(jù)(4,3)和(5,4)求得的直線方程為y=bx+a,則$\widehat$<b,$\widehat{a}$>a.(填“>”或“<”)
附:回歸直線方程$\widehat{y}$=$\widehat$x+$\widehat{a}$中:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

分析 算出x和y的平均值,有關結果代入公式即可求$\widehat$,$\widehat{a}$值,根據(jù)中間兩組數(shù)據(jù)(4,3)和(5,4)求得a,b,即可得出結論.

解答 解:由系數(shù)公式可知,$\overline{x}$=4.5,$\overline{y}$=3.5,
由于參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5,
∴$\widehat$=$\frac{3×2.5+4×3+5×4+6×4.5-4×4.5×3.5}{86-4×4.{5}^{2}}$=0.7,
$\widehat{a}$=3.5-0.7×4.5=0.35,
根據(jù)中間兩組數(shù)據(jù)(4,3)和(5,4)求得b=1,a=-1,
∴$\widehat$<b,$\widehat{a}$>a,
故答案為:<;>.

點評 本題考查線性回歸方程,兩個變量之間的關系,除了函數(shù)關系,還存在相關關系,通過建立回歸直線方程,就可以根據(jù)其部分觀測值,獲得對這兩個變量之間整體關系的了解.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

20.已知直線x-y+1=0與曲線y=lnx+a相切,則a的值為-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知直線 2x+my-1=0與直線 3x-2y+n=0垂直,垂足為 (2,p),則m+n+p=( 。
A.-6B.6C.4D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知等差數(shù)列{an}滿足:a1=2且a22=a1a5
(1)求數(shù)列{an}的通項公式;
(2)記Sn為數(shù)列{a2n-1}的前n項和,求Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知向量$\overrightarrow{a}$=(sinx,1),$\overrightarrow$=(sinx,cosx+1)
(I)若$\overrightarrow{a}$∥$\overrightarrow$,求所有滿足條件的向量$\overrightarrow{a}$、$\overrightarrow$的坐標;
(II)若函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$,x∈[-$\frac{π}{2}$,$\frac{π}{2}$],求函數(shù)f(x)的最大值及取得最大值時的x值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率e=$\frac{{\sqrt{3}}}{2}$,且橢圓C經(jīng)過點$A(1,-\frac{{\sqrt{3}}}{2})$,直線l:y=x+m與橢圓C交于不同的兩點A,B.
(1)求橢圓C的方程;
(2)若△AOB的面積為1(O為坐標原點),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若直線l∥平面α,直線a?α,則l與a的位置關系是( 。
A.l∥aB.l與a異面C.l與a相交D.l與a沒有公共點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.在等比數(shù)列{an}中,若an>0,a7=2,則$\frac{1}{a_3}+\frac{2}{{{a_{11}}}}$的最小值為( 。
A.$\sqrt{2}$B.$2\sqrt{2}$C.4D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{2}{3}$B.1C.$\frac{4}{3}$D.2

查看答案和解析>>

同步練習冊答案