已知定義域?yàn)?IMG src='http://thumb.zyjl.cn/pic1/img/20091027/20091027141322001.gif' width=113 height=21>的函數(shù)f(x)是偶函數(shù),并且在上是增函數(shù),若,則不等式的解集是                  .
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•威海二模)函數(shù)f(x)的定義域?yàn)锳,若存在非零實(shí)數(shù)t,使得對(duì)于任意x∈C(C⊆A)有x+t∈A,且f(x+t)≤f(x),則稱(chēng)f(x)為C上的t度低調(diào)函數(shù).已知定義域?yàn)榈暮瘮?shù)f(x)=-|mx-3|,且f(x)為[0,+∞)上的6度低調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2002年全國(guó)各省市高考模擬試題匯編 題型:044

已知定義域?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60B0/0084/0093/e4db1a7cf5edf39941ee92ce53684efa/A/Image1738.gif">的函數(shù)f(x),對(duì)于任意x,y∈時(shí),恒有f(xy)=f(x)+f(y).

(Ⅰ)求f(1);

(Ⅱ)求證:當(dāng)x∈時(shí),f()=-f(x);

(Ⅲ)若x>1時(shí),恒有f(x)<0,判斷f(x)在上的單調(diào)性,并用函數(shù)單調(diào)性的定義證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

函數(shù)f(x)的定義域?yàn)锳,若存在非零實(shí)數(shù)t,使得對(duì)于任意x∈C(C⊆A)有x+t∈A,且f(x+t)≤f(x),則稱(chēng)f(x)為C上的t度低調(diào)函數(shù).已知定義域?yàn)榈暮瘮?shù)f(x)=-|mx-3|,且f(x)為[0,+∞)上的6度低調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍是


  1. A.
    [0,1]
  2. B.
    [1,+∞)
  3. C.
    (-∞,0]
  4. D.
    (-∞,0]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年山東省威海市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:選擇題

函數(shù)f(x)的定義域?yàn)锳,若存在非零實(shí)數(shù)t,使得對(duì)于任意x∈C(C⊆A)有x+t∈A,且f(x+t)≤f(x),則稱(chēng)f(x)為C上的t度低調(diào)函數(shù).已知定義域?yàn)榈暮瘮?shù)f(x)=-|mx-3|,且f(x)為[0,+∞)上的6度低調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍是( )
A.[0,1]
B.[1,+∞)
C.(-∞,0]
D.(-∞,0]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年山東省威海市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:選擇題

函數(shù)f(x)的定義域?yàn)锳,若存在非零實(shí)數(shù)t,使得對(duì)于任意x∈C(C⊆A)有x+t∈A,且f(x+t)≤f(x),則稱(chēng)f(x)為C上的t度低調(diào)函數(shù).已知定義域?yàn)榈暮瘮?shù)f(x)=-|mx-3|,且f(x)為[0,+∞)上的6度低調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍是( )
A.[0,1]
B.[1,+∞)
C.(-∞,0]
D.(-∞,0]∪[1,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案