【題目】設函數(shù).

1)求fx)的單調(diào)區(qū)間;

2)當x0時,exax2xa0成立,求正實數(shù)a的取值范圍.

【答案】1)單調(diào)增區(qū)間為,減區(qū)間為2

【解析】

1,令 ,得x1,a0,即可得出單調(diào)性;

2)由exax2xa0,可得.a分類討論,利用(1)的結(jié)論即可得出a的取值范圍.

1

,得x1,因為a0,所以當x1時,f'x)<0;當時,f'x)>0,

所以fx)的單調(diào)增區(qū)間為,減區(qū)間為,.

2)由exax2xa0可得.

由(1)可知,當,即0a1時,fx)在(0,1)單調(diào)遞增,在(1,+∞)上單調(diào)遞減,

依題意有,即;

a1時,,與題意矛盾.

所以a的取值范圍是

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】為了解全市統(tǒng)考情況,從所有參加考試的考生中抽取4000名考生的成績,頻率分布直方圖如下圖所示.

(1)求這4000名考生的半均成績(同一組中數(shù)據(jù)用該組區(qū)間中點作代表);

2)由直方圖可認為考生考試成績z服從正態(tài)分布,其中分別取考生的平均成績和考生成績的方差,那么抽取的4000名考生成績超過84.81分(含84.81分)的人數(shù)估計有多少人?

3)如果用抽取的考生成績的情況來估計全市考生的成績情況,現(xiàn)從全市考生中隨機抽取4名考生,記成績不超過84.81分的考生人數(shù)為,求.(精確到0.001

附:;

,則;

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,平面PCD,,,EAD的中點,ACBE相交于點O.

1)證明:平面ABCD.

2)求直線BC與平面PBD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若是單調(diào)遞增函數(shù),求實數(shù)a的取值范圍;

2)若恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)引進現(xiàn)代化管理體制,生產(chǎn)效益明顯提高.2018年全年總收入與2017年全年總收入相比增長了一倍,實現(xiàn)翻番.同時該企業(yè)的各項運營成本也隨著收入的變化發(fā)生了相應變化.下圖給出了該企業(yè)這兩年不同運營成本占全年總收入的比例,下列說法正確的是(

A.該企業(yè)2018年原材料費用是2017年工資金額與研發(fā)費用的和

B.該企業(yè)2018年研發(fā)費用是2017年工資金額、原材料費用、其它費用三項的和

C.該企業(yè)2018年其它費用是2017年工資金額的

D.該企業(yè)2018年設備費用是2017年原材料的費用的兩倍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正方體中,分別是的中點,則(

A. B. C. 平面 D. 平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】惰性氣體分子為單原子分子,在自由原子情形下,其電子電荷分布是球?qū)ΨQ的.負電荷中心與原子核重合,但如兩個原子接近,則彼此能因靜電作用產(chǎn)生極化(正負電荷中心不重合),從而導致有相互作用力,這稱為范德瓦爾斯相互作用.今有兩個相同的惰性氣體原子,它們的原子核固定,原子核正電荷的電荷量為,這兩個相距為的惰性氣體原子組成體系的能量中有靜電相互作用能,其中為靜電常量,分別表示兩個原子負電中心相對各自原子核的位移,且都遠小于,當遠小于1時,,則的近似值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】山東省2020年高考將實施新的高考改革方案.考生的高考總成績將由3門統(tǒng)一高考科目成績和自主選擇的3門普通高中學業(yè)水平等級考試科目成績組成,總分為750分.其中,統(tǒng)一高考科目為語文、數(shù)學、外語,自主選擇的3門普通高中學業(yè)水平等級考試科目是從物理、化學、生物、歷史、政治、地理6科中選擇3門作為選考科目,語、數(shù)、外三科各占150分,選考科目成績采用“賦分制”,即原始分數(shù)不直接用,而是按照學生分數(shù)在本科目考試的排名來劃分等級并以此打分得到最后得分.根據(jù)高考綜合改革方案,將每門等級考試科目中考生的原始成績從高到低分為、、、、、、共8個等級。參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為、、、、、.等級考試科目成績計入考生總成績時,將等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到91-100、81-90、71-80,61-70、51-60、41-50、31-40、21-30八個分數(shù)區(qū)間,得到考生的等級成績.

舉例說明.

某同學化學學科原始分為65分,該學科等級的原始分分布區(qū)間為58~69,則該同學化學學科的原始成績屬等級.而等級的轉(zhuǎn)換分區(qū)間為61~70,那么該同學化學學科的轉(zhuǎn)換分為:

設該同學化學科的轉(zhuǎn)換等級分為,求得.

四舍五入后該同學化學學科賦分成績?yōu)?7.

(1)某校高一年級共2000人,為給高一學生合理選科提供依據(jù),對六個選考科目進行測試,其中物理考試原始成績基本服從正態(tài)分布.

(i)若小明同學在這次考試中物理原始分為84分,等級為,其所在原始分分布區(qū)間為82~93,求小明轉(zhuǎn)換后的物理成績;

(ii)求物理原始分在區(qū)間的人數(shù);

(2)按高考改革方案,若從全省考生中隨機抽取4人,記表示這4人中等級成績在區(qū)間的人數(shù),求的分布列和數(shù)學期望.

(附:若隨機變量,則,,

查看答案和解析>>

同步練習冊答案