19.從3件正品,2件次品中隨機(jī)抽取出兩件,則恰好是1件正品,1件次品的概率是( 。
A.$\frac{3}{5}$B.$\frac{1}{5}$C.$\frac{2}{5}$D.$\frac{2}{3}$

分析 本題是一個(gè)古典概型,試驗(yàn)發(fā)生包含的事件是從5件物品中取2件,滿足條件的事件是取出的2件中恰有一件次品,根據(jù)古典概型概率公式得到概率.

解答 解:由題意知本題是一個(gè)古典概型,
試驗(yàn)發(fā)生包含的事件是從5件物品中取兩件,共有C52=10種結(jié)果,
滿足條件的事件是取出的兩件中恰有一件次品,共有C31C21=6種結(jié)果,
根據(jù)古典概型概率公式得到P=$\frac{6}{10}$=$\frac{3}{5}$,
故選:A.

點(diǎn)評(píng) 本題主要考查古典概型,解決古典概型問(wèn)題時(shí)最有效的工具是列舉,大綱中要求能通過(guò)列舉解決古典概型問(wèn)題,也有一些題目需要借助于排列組合來(lái)計(jì)數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.如圖,已知AB為⊙O的直徑,C、F為⊙O上的兩點(diǎn),OC⊥AB,過(guò)點(diǎn)F作⊙O的切線FD交AB的延長(zhǎng)線于點(diǎn)D,連結(jié)CF交AB于點(diǎn)E.若AB=6,ED=4,則EF=( 。
A.2B.$\sqrt{5}$C.$\frac{{4\sqrt{5}}}{3}$D.$\frac{{4\sqrt{10}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.隨意安排甲、乙、丙3人在元旦假期3天中值班,每人值班1天,
(1)這3人的值班順序有多少種不同的安排方法?
(2)甲排在乙之前的概率是多少?
(3)乙不在第1天值班的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.對(duì)甲、乙的學(xué)習(xí)成績(jī)進(jìn)行抽樣分析,各抽五門(mén)功課,得到的觀測(cè)值如表:
6080709070
8060708075
問(wèn):甲、乙誰(shuí)的平均成績(jī)較好?誰(shuí)的各門(mén)功課發(fā)展較平衡?( 。
A.甲的平均成績(jī)較好,乙的各門(mén)功課發(fā)展較平衡
B.甲的平均成績(jī)較好,甲的各門(mén)功課發(fā)展較平衡
C.乙的平均成績(jī)較好,甲的各門(mén)功課發(fā)展較平衡
D.乙的平均成績(jī)較好,乙的各門(mén)功課發(fā)展較平衡

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.平面α過(guò)正方體ABCD-A1B1C1D1的頂點(diǎn)A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面AB B1A1=n,則m,n所成角的正弦值為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知α∈($\frac{π}{4}$,$\frac{π}{2}$),sinα+cosα=$\frac{7}{5}$,求$\frac{sin(\frac{3π}{2}+α)tan(α-5π)cos(\frac{π}{6}-α)}{sin(\frac{π}{3}+α)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)命題p:實(shí)數(shù)x滿足(x-a)(x-3a)<0,其中a>0,命題q:實(shí)數(shù)x滿足 2<x≤3.
(1)若a=1,有p且q為真,求實(shí)數(shù)x的取值范圍.
(2)若?p是?q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知數(shù)列{an}的通項(xiàng)公式為an=(-1)n(2n-1)
(1)求S1,S2,S3;并猜想Sn
(2)利用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.當(dāng)實(shí)數(shù)a在區(qū)間[1,m](m>1)隨機(jī)取值時(shí),函數(shù)f(x)=-x2+ax+2在區(qū)間(1,+∞)上是單調(diào)減函數(shù)的概率為$\frac{1}{3}$,則實(shí)數(shù)m=4.

查看答案和解析>>

同步練習(xí)冊(cè)答案