已知點(diǎn)P是拋物線y2=4x上的一個(gè)動(dòng)點(diǎn),則點(diǎn)P到點(diǎn)(1,1)的距離與P到該拋物線焦點(diǎn)的距離之和的最小值為(  )
A、4B、3C、2D、1
考點(diǎn):拋物線的簡單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)拋物線方程求出焦點(diǎn)坐標(biāo)和準(zhǔn)線方程,再由拋物線的定義知:當(dāng)P、Q和P在準(zhǔn)線上的射影點(diǎn)A三點(diǎn)共線時(shí),這個(gè)距離之和最小,即可得出結(jié)論.
解答: 解:∵拋物線方程為y2=4x,
∴2p=4,可得焦點(diǎn)為F(1,0),準(zhǔn)線為x=-1
設(shè)P在拋物線準(zhǔn)線l上的射影點(diǎn)為A點(diǎn),Q(1,1)
則由拋物線的定義,可知當(dāng)P、Q、A點(diǎn)三點(diǎn)共線時(shí),點(diǎn)P到點(diǎn)(1,1)的距離與P到該拋物線焦點(diǎn)的距離之和最小,
∴最小值為1+1=2.
故選:C.
點(diǎn)評(píng):本題給出拋物線上的動(dòng)點(diǎn),求該點(diǎn)到定點(diǎn)Q和焦點(diǎn)F距離之和的最小值,著重考查了拋物線的定義和簡單幾何性質(zhì)等知識(shí),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)BB1是正方體的一條棱,這個(gè)正方體中與BB1平行的棱有
 
條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面對(duì)相關(guān)系數(shù)r描述正確的是( 。
A、r>0表兩個(gè)變量負(fù)相關(guān)
B、r>1表兩個(gè)變量正相關(guān)
C、r 只能大于零
D、|r|越接近于零,兩個(gè)變量相關(guān)關(guān)系越弱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C的參數(shù)方程
x=
2
csot
y=
2
sint
(t為參數(shù)),C在點(diǎn)(1,1)處的切線為l,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,則l的極坐標(biāo)方程為( 。
A、ρ=
2
sin(θ+
π
4
B、ρsin(θ+
π
4
)=
2
C、ρsin(θ+
π
4
)=2
D、ρ=sin(θ+
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若原點(diǎn)到直線ax+by+1=0的距離為
1
2
,則兩圓(x-a)2+y2=1,x2+(y-b)2=1的位置關(guān)系是( 。
A、內(nèi)切B、外切C、內(nèi)含D、外離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知θ是鈍角三角形中的最小角,則sin(θ+
π
3
)的取值范圍是( 。
A、(
3
2
,1]
B、[
3
2
,1]
C、(
2
2
,1)
D、[
2
2
,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是正方體的側(cè)面展開圖,L1、L2是兩條側(cè)面對(duì)角線,則在正方體中,L1與L2( 。
A、互相平行
B、相交
C、異面且互相垂直
D、異面且夾角為60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x+
1
x-2
(x>2)的最小值為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(n)=(2n+7)•3n+9,是否存在自然數(shù)m使得任意的n∈N*,都有m整除f(n)?若存在,求出最大的m值,并證明你的結(jié)論;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊答案