15.設(shè)集合A={x∈Z|x2-2x-3≤0},B={0,1},則∁AB=( 。
A.{-3,-2,-1}B.{-1,2,3}C.{-1,0,1,2,3}D.{0,1}

分析 列舉出全集A,即可確定出B的補(bǔ)集.

解答 解:∵合A={x∈Z|x2-2x-3≤0}={-1,0,1,2,3},B={0,1},
∴∁UA={-1,2,3}.
故選B.

點(diǎn)評(píng) 此題考查了補(bǔ)集及其運(yùn)算,熟練掌握補(bǔ)集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow$|=2,$\overrightarrow{a}$⊥($\overrightarrow{a}$-$\overrightarrow$),則$\overrightarrow{a}$與$\overrightarrow$的夾角為(  )
A.$\frac{π}{2}$B.$\frac{2π}{3}$C.$\frac{π}{6}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知奇函數(shù)f(x)是定義在R上的連續(xù)函數(shù),滿足f(2)=$\frac{5}{3}$,且f(x)在(0,+∞)上的導(dǎo)函數(shù)f'(x)<x2,則不等式f(x)>$\frac{{{x^3}-3}}{3}$的解集為(-∞,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知a=3,1+$\frac{tanA}{tanB}=\frac{2c}$,則b+c的最大值為3$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知x>0,y>0,a=x+y,$b=\sqrt{{x^2}+xy+{y^2}}$,$c=m\sqrt{xy}$,若存在正數(shù)m使得對(duì)于任意正數(shù)x,y,可使a,b,c為三角形的三邊構(gòu)成三角形,則m的取值范圍是(2-$\sqrt{3}$,2+$\sqrt{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知向量$\overrightarrow{a}$=(1,-1),$\overrightarrow{a}$•$\overrightarrow$=0,|$\overrightarrow{a}$-$\overrightarrow$|=2,則|$\overrightarrow$|=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.小明在解決三視圖還原問(wèn)題時(shí),錯(cuò)把圖一的三視圖看成圖二的三視圖,假設(shè)圖一所對(duì)應(yīng)幾何體中最大的面積為S1,圖二所對(duì)應(yīng)幾何體中最大面的面積為S2,三視圖中所有三角形均為全等的等腰直角三角形,則$\frac{{S}_{1}}{{S}_{2}}$=( 。
A.1B.$\frac{\sqrt{6}}{6}$C.$\frac{\sqrt{6}}{2}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知角θ的終邊過(guò)點(diǎn)(2sin2$\frac{π}{8}$-1,a),若sinθ=2$\sqrt{3}$sin$\frac{13π}{12}$cos$\frac{π}{12}$,則實(shí)數(shù)a等于( 。
A.-$\sqrt{6}$B.-$\frac{\sqrt{6}}{2}$C.±$\sqrt{6}$D.±$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)函數(shù)f(x)=8lnx+15x-x2,數(shù)列{an}滿足an=f(n),n∈N+,數(shù)列{an}的前n項(xiàng)和Sn最大時(shí),n=( 。
A.15B.16C.17D.18

查看答案和解析>>

同步練習(xí)冊(cè)答案