6.若一條直線和一個(gè)平面內(nèi)無數(shù)條直線垂直,則直線和平面的位置關(guān)系是(  )
A.垂直B.平行
C.相交D.平行或相交或垂直或在平面內(nèi)

分析 利用直線與平面的位置關(guān)系直接求解.

解答 解:當(dāng)一條直線和一個(gè)平面平行時(shí),這條直線和這個(gè)平面內(nèi)無數(shù)條直線垂直;
當(dāng)一條直線和一個(gè)平面相交時(shí),這條直線和這個(gè)平面內(nèi)無數(shù)條直線垂直;
當(dāng)一條直線和一個(gè)平面垂直時(shí),這條直線和這個(gè)平面內(nèi)無數(shù)條直線垂直;
當(dāng)一條直線在一個(gè)平面內(nèi)時(shí),這條直線和這個(gè)平面內(nèi)無數(shù)條直線垂直.
故選:D.

點(diǎn)評(píng) 本題考查直線與平面的位置關(guān)系的判斷,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間中線線、線面、面面間的位置關(guān)系的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若將函數(shù)f(x)=$\frac{1}{2}$sin(2x+$\frac{π}{3}$)圖象上的每一個(gè)點(diǎn)都向左平移$\frac{π}{3}$個(gè)單位,得到g(x)的圖象,則函數(shù)g(x)的單調(diào)遞增區(qū)間為( 。
A.[kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$](k∈Z)B.[kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$](k∈Z)
C.[kπ-$\frac{2π}{3}$,kπ-$\frac{π}{6}$](k∈Z)D.[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)$y=\sqrt{1-\frac{1}{2^x}}$的定義域?yàn)閇0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求斜率是直線y=-$\sqrt{3}$x+1的斜率的-$\frac{1}{3}$,且分別滿足下列條件的直線方程
(1)經(jīng)過點(diǎn)($\sqrt{3}$,-1);
(2)在y軸上的截距為-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=kx3-3kx2+b在區(qū)間[-2,2]上的最大值為3,最小值為-17,求k,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)關(guān)于x的方程x2+(m-3)x+3-2m=0的兩個(gè)實(shí)數(shù)根為α、β,求:(α-2)2+(β-2)2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.“a>b”是“a2>b2”的__________條件( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知$f(x)={({x+1})^2}\;,\;\;g(x)=\frac{x-1}{x+1}$,則f(x)•g(x)=x2-1,(x≠-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.一個(gè)幾何體的三視圖如圖所示(單位:m),正視圖和俯視圖的上面均是底邊長為12m的等腰直角三角形,下面均是邊長為6m的正方形,則該幾何體的體積為216+72πm3

查看答案和解析>>

同步練習(xí)冊(cè)答案