【題目】設(shè)為坐標原點,動點在圓上,過作軸的垂線,垂足為,點滿足.
(1)求點的軌跡的方程;
(2)直線上的點滿足.過點作直線垂直于線段交于點.
(。┳C明:恒過定點;
(ⅱ)設(shè)線段交于點,求四邊形的面積.
【答案】(1)(2)(ⅰ)證明見解析;(ⅱ).
【解析】
(1)設(shè),則,根據(jù)向量關(guān)系坐標化可得,消去可得軌跡的方程;
(2)(。┰O(shè),根據(jù)直線垂直,向量的數(shù)量積為0可得:,設(shè)直線方程為,化簡即可得到直線過定點坐標;
(ⅱ)根據(jù)直線與圓相交的弦長公式求出,,再根據(jù)對角線相乘的半,求得四邊形的面積.
(1)設(shè),則
∵,又,,
∴
又,∴,化簡得點的軌跡方程為
(2)(。┰O(shè),
∵,∴
又,∴ ①
又直線過點且垂直于線段,故設(shè)直線方程為
化簡得,又由①式可得,所以恒過定點
(ⅱ)直線為,交圓于兩點
則圓心到直線的距離為,
∴弦長,
又直線為,由得,
故,
∴,即四邊形的面積
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某便利店統(tǒng)計了今年第一季度各個品類的銷售收入占比和凈利潤占比,并將部分品類的這兩個數(shù)據(jù)制成如下統(tǒng)計圖(注:銷售收入占比,凈利潤占比,凈利潤銷售收入成本各類費用),現(xiàn)給出下列判斷:
①該便利店第一季度至少有一種品類是虧損的;
②該便利店第一季度的銷售收入中“生鮮類”貢獻最大;
③該便利店第一季度“非生鮮食品類”的凈利潤一定高于“日用百貨”的銷售收入;
④該便利店第一季度“生鮮類”的銷售收入比“非生鮮食品類”的銷售收入多.
則上述判斷中正確的是( )
A.①②B.②③C.①④D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點是軸下方(不含軸)一點,拋物線上存在不同的兩點、滿足,,其中為常數(shù),且、兩點均在上,弦的中點為.
(1)若點坐標為,時,求弦所在的直線方程;
(2)在(1)的條件下,如果過點的直線與拋物線只有一個交點,過點的直線與拋物線也只有一個交點,求證:若和的斜率都存在,則與的交點在直線上;
(3)若直線交拋物線于點,求證:線段與的比為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的焦距是,長軸長是短軸長3倍,任作斜率為的直線與橢圓交于兩點(如圖所示),且點在直線的左上方.
(1)求橢圓的方程;
(2)若,求的面積;
(3)證明:的內(nèi)切圓的圓心在一條定直線上。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)在處的切線方程;
(2)若在上恒成立,求實數(shù)的取值范圍;
(3)當時,求函數(shù)的極大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標系中,曲線的方程為,以原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.若將曲線上的所有點的橫坐標縮小到原來的一半,縱坐標伸長到原來的倍,得曲線.
(1)寫出直線和曲線的直角坐標方程;
(2)設(shè)點, 直線與曲線的兩個交點分別為,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是拋物線C:上的一點,過P作互相垂直的直線PA,PB.與拋物線C的另一交點分別是A,B.
(1)若直線AB的斜率為,求AB方程;
(2)設(shè),當時,求△PAB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,圓錐的底面半徑為2,是圓周上的定點,動點在圓周上逆時針旋轉(zhuǎn),設(shè)(),是母線的中點,已知當時,與底面所成角為.
(1)求該圓錐的側(cè)面積;
(2)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,點在橢圓上,,,且的離心率為,拋物線,點在上.
(1)求橢圓的方程;
(2)過點作的切線,若,直線與交于兩點,求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com