13.過雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左焦點(diǎn)F(-c,0)(c>0),作圓x2+y2=$\frac{a^2}{4}$的切線,切點(diǎn)為E,延長FE交雙曲線右支于點(diǎn)P,若$\overrightarrow{OP}$=2$\overrightarrow{OE}$-$\overrightarrow{OF}$,則雙曲線的離心率是$\frac{\sqrt{10}}{2}$.

分析 設(shè)右焦點(diǎn)為F′,由$\overrightarrow{OP}$=2$\overrightarrow{OE}$-$\overrightarrow{OF}$,可得E是PF的中點(diǎn),利用O為FF'的中點(diǎn),可得OE為△PFF'的中位線,從而可求PF′、PF,再由勾股定理得出關(guān)于a,c的關(guān)系式,最后即可求得離心率.

解答 解:設(shè)右焦點(diǎn)為F′,
∵$\overrightarrow{OP}$=2$\overrightarrow{OE}$-$\overrightarrow{OF}$,
∴$\overrightarrow{OP}$+$\overrightarrow{OF}$=2$\overrightarrow{OE}$,
∴E是PF的中點(diǎn),
∴PF′=2OE=a,
∴PF=3a,
∵OE⊥PF,
∴PF′⊥PF,
∴(3a)2+a2=4c2,
∴e=$\frac{\sqrt{10}}{2}$,
故答案為:$\frac{\sqrt{10}}{2}$.

點(diǎn)評(píng) 本題主要考查雙曲線的標(biāo)準(zhǔn)方程,以及雙曲線的簡單性質(zhì)的應(yīng)用,考查拋物線的定義,考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知實(shí)數(shù)x、y同時(shí)滿足以下三個(gè)條件:①x-y+2≤0;②x≥1;③x+y-7≤0,則$\frac{y}{x}$的取值范圍是[$\frac{9}{5}$,6].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.f(x)=sin2x+$\frac{\sqrt{3}}{2}$sin2x.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)在△ABC中,角A,B,C的對邊分別為a,b,c,若f($\frac{A}{2}$)=1,△ABC的面積為3$\sqrt{3}$,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={x|x=$\frac{k}{3}$,k∈Z},B={x|x=$\frac{k}{6}$,k∈Z},則( 。
A.A?BB.A?BC.A=BD.A與B無公共元素

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a3=24,a6=18.
(1)求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn的表達(dá)式;
(2)當(dāng)n為何值時(shí),Sn最大,并求Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知向量$\overrightarrow{a}$=(-3,1),$\overrightarrow$=(1,-2),則$\overrightarrow{a}$在$\overrightarrow$方向上的投影為$-\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知集合M={1,2,3},N={2,3,4},則下列式子正確的是( 。
A.M⊆NB.N⊆MC.M∩N={2,3}D.M∪N={1,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在空間直角坐標(biāo)系中,設(shè)A(m,1,3),B(1,-1,1),且|AB|=2$\sqrt{2}$,則m=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.對于集合A,B,C,A={x|x2-5x+a≥0},B={x|m≤x≤m+7},若對于?a∈C,?m∈R,使得A∪B=R.求集合C.

查看答案和解析>>

同步練習(xí)冊答案