已知拋物線C:y=2x2,直線:y=kx+2交拋物線C于A,B兩點,M是線段AB的中點,過M作x軸的垂線交C于點N.
證明:拋物線C在點N處的切線與AB平行.
分析:把y=kx+2代入y=2x2,利用韋達定理,確定N的坐標(biāo),從而可得拋物線在點N處的切線l的方程,進而可證明切線l的與k相等,即可得到結(jié)論.
解答:證明:如圖,設(shè)A(x1,2
 x
2
1
),B(x2,2
 x
2
2
),

把y=kx+2代入y=2x2得:2x2-kx-2=0,
由韋達定理得:x1+x2=
k
2
,x1x2=-1,所以xN=xM=
x1+x2
2
=
k
4

即N點的坐標(biāo)為(
k
4
,
k2
8
).
設(shè)拋物線在點N處的切線l的方程為y-
k2
8
=m(x-
k
4
),
將y=2x2代入上式得:2x2-mx+
mk
4
-
k2
8
=0,
因為直線l與拋物線C相切,所以△=m2-8(
mk
4
-
k2
8
)=m2-2mk+k2=(m-k)2=0,
所以m=k,即l∥AB.
點評:本題考查直線與拋物線的位置關(guān)系,考查韋達定理的運用,考查拋物線的切線,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知拋物線C:y=-x2+2x,在點A(0,0),B(2,0)分別作拋物線的切線L1、L2
(1)求切線L1和L2的方程;
(2)求拋物線C與切線L1和L2所圍成的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y=x2+4x+
7
2
,過拋物線C上點M且與M處的切線垂直的直線稱為拋物線C在點M的法線.
(1)若拋物線C在點M的法線的斜率為-
1
2
,求點M的坐標(biāo)(x0,y0);
(2)設(shè)P(-2,4)為C對稱軸上的一點,在C上一定存在點,使得C在該點的法線通過點P.試求出這些點,以及C在這些點的法線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y=x2,從原點O出發(fā)且斜率為k0的直線l0交拋物線C于一異于O點的點A1(x1,y1),過A1作一斜率為k1的直線l1交拋物線C于一異于A1的點A2(x2,y2)…,過An作斜率為kn的直線ln交拋物線C于一異于An的點An+1(xn+1,yn+1)且知kn=k0n+1(k0>0且k0≠1).
(1)求x1,x2以及xn與xn+1之間的遞推關(guān)系式;
(2)求{xn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y=2x2,直線y=kx+2交C于A,B兩點,M是線段AB的中點,過M作軸的垂線交C于點N.  
(1)求三角形OAB面積的最小值;
(2)證明:拋物線C在點N處的切線與AB平行;
(3)是否存在實數(shù)k使NANB,若存在,求k的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•武漢模擬)已知拋物線C:y=
1
2
x2
與直線l:y=kx-1沒有公共點,設(shè)點P為直線l上的動點,過P作拋物線C的兩條切線,A,B為切點.
(1)證明:直線AB恒過定點Q;
(2)若點P與(1)中的定點Q的連線交拋物線C于M,N兩點,證明:
|PM|
|PN|
=
|QM|
|QN|

查看答案和解析>>

同步練習(xí)冊答案