分析 (1)由正弦定理得sinB(1-2cosA)=2sinAcosB,
即sinB=2(sinAcosB+cosAsinB)=2sinC,得b=2c.
(2)由tanA=$\frac{sinA}{cosA}$,=2$\sqrt{2}$,解得cosA=$\frac{1}{3}$,sinA=$\frac{2\sqrt{2}}{3}$
由(1)b=2c,由余弦定理有cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{4{c}^{2}+{c}^{2}-1}{2bc}=\frac{1}{3}$,解c2=$\frac{3}{11}$,即可求面積.
解答 解:(1)∵b(1-2cosA)=2acosB,
∴由正弦定理得sinB(1-2cosA)=2sinAcosB,
即sinB=2(sinAcosB+cosAsinB)=2sinC
所以b=2c,∵b=2,∴c=1;…(5分)
(2)∵tanA=$\frac{sinA}{cosA}$=2$\sqrt{2}$,∴sinA=2$\sqrt{2}cosA$
∵sin2A+cos2A=1,
解得cosA=$\frac{1}{3}$,∴sinA=$\frac{2\sqrt{2}}{3}$
由(1)b=2c
由余弦定理有cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{4{c}^{2}+{c}^{2}-1}{2bc}=\frac{1}{3}$,解得c2=$\frac{3}{11}$
∴s△ABC=$\frac{1}{2}bcsinA={c}^{2}sinA=\frac{3}{11}•\frac{2\sqrt{2}}{3}=\frac{2\sqrt{2}}{11}$.
點(diǎn)評(píng) 本題考查了正余弦定理的應(yīng)用,考查了計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6h | B. | 8h | C. | 12h | D. | 24h |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
優(yōu)秀 | 非優(yōu)秀 | 總計(jì) | |
A班 | 14 | 6 | 20 |
B班 | 7 | 13 | 20 |
總計(jì) | 21 | 19 | 40 |
P(K≥k0) | 0.050 | 0.010 |
k0 | 3.841 | 6.635 |
A. | 有99%的把握認(rèn)為環(huán)保知識(shí)測(cè)試成績與專業(yè)有關(guān) | |
B. | 有99%的把握認(rèn)為環(huán)保知識(shí)測(cè)試成績與專業(yè)無關(guān) | |
C. | 有95%的把握認(rèn)為環(huán)保知識(shí)測(cè)試成績與專業(yè)無關(guān) | |
D. | 有95%的把握認(rèn)為環(huán)保知識(shí)測(cè)試成績與專業(yè)有關(guān) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{9}{4}$ | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com