【題目】如圖,四邊形ABCD是梯形,AD∥BC,∠BAD=90°,四邊形CC1D1D為矩形,已知AB⊥BC1,AD=4,AB=2,BC=1.

(I)求證:BC1∥平面ADD1;

(II)若DD1=2,求平面AC1D1與平面ADD1所成的銳二面角的余弦值;

(III)設(shè)P為線段C1D上的一個(gè)動(dòng)點(diǎn)(端點(diǎn)除外),判斷直線BC1與直線CP能否垂直?并說(shuō)明理由.

【答案】I)證明見(jiàn)解析;II;(III)直線BC1CP不可能垂直.

【解析】試題分析:(1先根據(jù)線面平行的判定定理證明平面平面,再由面面垂直的判定定理可得平面平面根據(jù)面面平行的性質(zhì)可得結(jié)果;(2先證明平面過(guò)在底面中作,所以, 兩兩垂直,以分別為軸、軸和軸,建立空間直角坐標(biāo)系,求出平面與平面的法向量,利用空間向量夾角余弦公式可得結(jié)果;(3)利用反證法,若兩直線垂直根據(jù)向量垂直數(shù)量積為零可得到點(diǎn)不在線段上,從而假設(shè)不成立.

試題解析:(I)證明:由CC1D1D為矩形,得CC1DD1,又因?yàn)?/span>DD1平面ADD1,CC1平面ADD1,

所以CC1平面ADD1,

同理BC平面ADD1,又因?yàn)?/span>BCCC1=C,所以平面BCC1平面ADD1,

又因?yàn)?/span>BC1平面BCC1,所以BC1平面ADD1.

II.由平面ABCD中,ADBCBAD=90°,得ABBC,又因?yàn)?/span>ABBC1,BCBC1=B,所以AB平面BCC1,所以ABCC1,又因?yàn)樗倪呅?/span>CC1D1D為矩形,且底面ABCDABCD相交一點(diǎn),所以CC1平面ABCD,因?yàn)?/span>CC1DD1,所以DD1平面ABCD.

過(guò)D在底面ABCD中作DM⊥AD,所以DA,DM,DD1兩兩垂直,以DA,DM,DD1分別為x軸、y軸和z軸,如圖建立空間直角坐標(biāo)系,

D00,0),A4,0,0),B4,20),C3,2,0),C13,22),D100,2),

所以=-l2,2),=-4,0,2.

設(shè)平面AC1D1的一個(gè)法向量為m=x,y,z),

=0,=0,得

x=2,得m=2-3,4

易得平面ADD1的法向量n=0,1,0.

所以cos<m,n>=.

即平面AC1D1與平面ADD1所成的銳二面角的余弦值為

III)結(jié)論:直線BC1CP 不可能垂直,

證明:設(shè)DD1=mm>0),= 01)),

B4,2,0),C320),C132,m),D0,0,0),

=-l0,m),=3,2,m),= =3,2,m),=-3-2,0),=+=3-3,2-2,m.

BC1CP,則·=-3-3+m2=0,即(m2-3=-3,因?yàn)?/span>≠0

所以m2=-+3>0,解得>1,這與0<<l矛盾.

所以直線BC1CP不可能垂直.

【方法點(diǎn)晴】本題主要考查線面平行的判定定理利用空間向量求二面角,屬于難題.空間向量解答立體幾何問(wèn)題的一般步驟是:(1)觀察圖形,建立恰當(dāng)?shù)目臻g直角坐標(biāo)系;(2)寫出相應(yīng)點(diǎn)的標(biāo),求出相應(yīng)直線的方向向量;(3)設(shè)出相應(yīng)平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關(guān)系轉(zhuǎn)化為向量關(guān)系;(5)根據(jù)定理結(jié)論求出相應(yīng)的角和距離.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某網(wǎng)店統(tǒng)計(jì)了連續(xù)三天售出商品的種類情況:第一天售出19種商品,第二天售出13種商品,第三天售出18種商品;前兩天都售出的商品有3種,后兩天都售出的商品有4種,則該網(wǎng)店

第一天售出但第二天未售出的商品有______種;

這三天售出的商品最少有_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:

甲說(shuō):“是作品獲得一等獎(jiǎng)”;

乙說(shuō):“作品獲得一等獎(jiǎng)”;

丙說(shuō):“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;

丁說(shuō):“是作品獲得一等獎(jiǎng)”.

若這四位同學(xué)中只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,p,q

已知pq成立的必要不充分條件,求實(shí)數(shù)m的取值范圍;

成立的充分不必要條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)有初中學(xué)生1800人,高中學(xué)生1200人.為了解學(xué)生本學(xué)期課外閱讀時(shí)間,現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,先統(tǒng)計(jì)了他們課外閱讀時(shí)間,然后按“初中學(xué)生”和“高中學(xué)生”分為兩組,再將每組學(xué)生的閱讀時(shí)間(單位:小時(shí))分為5組:[0,10),[10,20),[20,30),[30,40),[40,50],并分別加以統(tǒng)計(jì),得到如下圖所示的頻率分布直方圖.

(I)寫出a的值;

(II)試估計(jì)該校所有學(xué)生中,閱讀時(shí)間不小于30個(gè)小時(shí)的學(xué)生人數(shù);

(III)從閱讀時(shí)間不足10個(gè)小時(shí)的樣本學(xué)生中隨機(jī)抽取3人,并用X表示其中初中生的人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市在進(jìn)行創(chuàng)建文明城市的活動(dòng)中,為了解居民對(duì)“創(chuàng)文”的滿意程度,組織居民給活動(dòng)打分(分?jǐn)?shù)為整數(shù).滿分為100分).從中隨機(jī)抽取一個(gè)容量為120的樣本.發(fā)現(xiàn)所有數(shù)據(jù)均在內(nèi).現(xiàn)將這些分?jǐn)?shù)分成以下6組并畫出了樣本的頻率分布直方圖,但不小心污損了部分圖形,如圖所示.觀察圖形,回答下列問(wèn)題:

(1)算出第三組的頻數(shù).并補(bǔ)全頻率分布直方圖;

(2)請(qǐng)根據(jù)頻率分布直方圖,估計(jì)樣本的眾數(shù)、中位數(shù)和平均數(shù).(每組數(shù)據(jù)以區(qū)間的中點(diǎn)值為代表)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線為參數(shù)),曲線,將的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,縱坐標(biāo)縮短為原來(lái)的得到曲線.

(1)求曲線的普通方程,曲線的直角坐標(biāo)方程;

(2)若點(diǎn)為曲線上的任意一點(diǎn),為曲線上的任意一點(diǎn),求線段的最小值,并求此時(shí)的的坐標(biāo);

(3)過(guò)(2)中求出的點(diǎn)做一直線,交曲線兩點(diǎn),求面積的最大值(為直角坐標(biāo)系的坐標(biāo)原點(diǎn)),并求出此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)滿足如下條件:

①函數(shù)的最小值為,最大值為9

;

③若函數(shù)在區(qū)間上是單調(diào)函數(shù),則的最大值為2

試探究并解決如下問(wèn)題:

(Ⅰ)求,并求的值;

(Ⅱ)求函數(shù)的圖象的對(duì)稱軸方程;

(Ⅲ)設(shè)是函數(shù)的零點(diǎn),求的值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各一元二次不等式中,解集為空集的是( 。

A.x+3)(x1)>0B.x+4)(x1)<0

C.x22x+30D.2x23x20

查看答案和解析>>

同步練習(xí)冊(cè)答案