【題目】設(shè)函數(shù)),已知有且僅有3個(gè)零點(diǎn),下列結(jié)論正確的是(

A.上存在,,滿足

B.有且僅有1個(gè)最小值點(diǎn)

C.單調(diào)遞增

D.的取值范圍是

【答案】AB

【解析】

由題意根據(jù)在區(qū)間3個(gè)零點(diǎn)畫出大致圖象,可得區(qū)間長度介于周期,再用表示周期,得的范圍.

解:畫出函數(shù)大致圖象如圖所示,

當(dāng)時(shí);

,所以時(shí)軸右側(cè)第一個(gè)最大值區(qū)間內(nèi)單調(diào)遞增,

函數(shù)在,僅有3個(gè)零點(diǎn)時(shí),則的位置在之間(包括,不包括,

,則得,,

軸右側(cè)第一個(gè)點(diǎn)橫坐標(biāo)為,周期,

所以,

,解得,所以錯(cuò)誤;

在區(qū)間,上,函數(shù)達(dá)到最大值和最小值,

所以存在,,滿足,所以正確;

由大致圖象得,內(nèi)有且只有1個(gè)最小值,正確;

因?yàn)?/span>最小值為,所以時(shí),,,

所以時(shí),函數(shù)不單調(diào)遞增,所以錯(cuò)誤.

故選:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出以下四個(gè)命題:

①數(shù)列為等差數(shù)列的充要條件是其通項(xiàng)公式為n的一次函數(shù).

②在面積為S的邊AB上任取一點(diǎn)P,則的面積大于的概率為.

③將多項(xiàng)式分解因式得,則.

④若那么由,那么由以及x軸所圍成的圖形一定在x軸下方.

其中正確命題的序號為_____________(把所有正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高三數(shù)學(xué)考試中,一般有一道選做題,學(xué)生可以從選修4-4和選修4-5中任選一題作答,滿分10.某高三年級共有1000名學(xué)生參加了某次數(shù)學(xué)考試,為了了解學(xué)生的作答情況,計(jì)劃從該年級1000名考生成績中隨機(jī)抽取一個(gè)容量為10的樣本,為此將1000名考生的成績按照隨機(jī)順序依次編號為000~999.

1)若采用系統(tǒng)抽樣法抽樣,從編號為000~999的成績中隨機(jī)確定的編號為026,求樣本中的最大編號.

2)若采用分層抽樣法,按照學(xué)生選擇選修4-4或選修4-5的情況將成績分為兩層,已知該校共有600名考生選擇了選修4-4,400名考生選擇了選修4-5,在選取的樣本中,選擇選修4-4的平均得分為6分,方差為2,選擇選修4-5的平均得分為5分,方差為0.75.用樣本估計(jì)該校1000名考生選做題的平均得分和得分的方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱ABCA1B1C1中,∠ACB90°,∠ABC45°,ABAA12,PCC1的中點(diǎn).

1)證明:AB1⊥平面PA1B

2)設(shè)EBC的中點(diǎn),線段AB1上是否存在一點(diǎn)Q,使得QE∥平面A1ACC1?若存在,求四棱錐QAA1C1C的體積;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)M是圓C:(x+12+y28上的動點(diǎn),定點(diǎn)D1,0),點(diǎn)P在直線DM上,點(diǎn)N在直線CM上,且滿足2,0,動點(diǎn)N的軌跡為曲線E

1)求曲線E的方程;

2)若AB是曲線E的長為2的動弦,O為坐標(biāo)原點(diǎn),求AOB面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,,離心率為,過作直線與橢圓交于,兩點(diǎn),的周長為8

1)求橢圓的標(biāo)準(zhǔn)方程;

2)問:的內(nèi)切圓面積是否有最大值?若有,試求出最大值;若沒有,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

1)若,求處的切線與兩坐標(biāo)軸圍成的三角形的面積;

2)若上的最大值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】足球運(yùn)動是一項(xiàng)古老的體育活動,眾多的資料表明,中國古代足球的出現(xiàn)比歐洲早,歷史更為悠久,如圖,現(xiàn)代比賽用足球是由正五邊形與正六邊形構(gòu)成的共32個(gè)面的多面體,著名數(shù)學(xué)家歐拉證明了凸多面體的面數(shù)(F),頂點(diǎn)數(shù)(V),棱數(shù)(E)滿足F+V-E=2,那么,足球有______.個(gè)正六邊形的面,若正六邊形的邊長為,則足球的直徑為______.cm(結(jié)果保留整數(shù))(參考數(shù)據(jù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+4[sin(θ+)]x2,θ∈[0,2π].

)若函數(shù)f(x)為偶函數(shù),求tanθ的值;

)若f(x)在[,1]上是單調(diào)函數(shù),求θ的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案