【題目】某個(gè)體經(jīng)營(yíng)者把開始六個(gè)月試銷A、B兩種商品的逐月投資與所獲純利潤(rùn)列成下表:
投資A商品金額(萬(wàn)元) | 1 | 2 | 3 | 4 | 5 | 6 |
獲純利潤(rùn)(萬(wàn)元) | 0.65 | 1.39 | 1.85 | 2 | 1.84 | 1.40 |
投資B商品金額(萬(wàn)元) | 1 | 2 | 3 | 4 | 5 | 6 |
獲純利潤(rùn)(萬(wàn)元) | 0.25 | 0.49 | 0.76 | 1 | 1.26 | 1.51 |
該經(jīng)營(yíng)者準(zhǔn)備下月投入12萬(wàn)元經(jīng)營(yíng)這兩種產(chǎn)品,但不知投入A、B兩種商品各多少才最合算.請(qǐng)你幫助制定一下資金投入方案,使得該經(jīng)營(yíng)者能獲得最大利潤(rùn),并按你的方案求出該經(jīng)營(yíng)者下月可獲得的最大利潤(rùn)(結(jié)果保留兩個(gè)有效數(shù)字).
【答案】分別投資A、B兩種商品3.2萬(wàn)元和8.8萬(wàn)元,可獲最大利潤(rùn)4.1萬(wàn)元
【解析】
根據(jù)表格數(shù)據(jù),畫出散點(diǎn)圖,從而求出函數(shù)模型,再設(shè)第7個(gè)月投入A,B兩種商品的資金分別為x萬(wàn)元,總利潤(rùn)為萬(wàn)元,求出利潤(rùn)函數(shù),利用配方法,即可得到結(jié)論.
以投資額為橫坐標(biāo),純利潤(rùn)為縱坐標(biāo),在直角坐標(biāo)系中畫出散點(diǎn)圖(如下圖).
據(jù)此,可考慮用下列函數(shù)分別描述上述兩組數(shù)據(jù)之間的對(duì)應(yīng)關(guān)系:
① ②
把,代入①式,得,解得
故前六個(gè)月所獲純利潤(rùn)關(guān)于月投資于A種商品的金額的函數(shù)關(guān)系式可近似的用
表示
再把,代入②式,得,故前六個(gè)月所獲純利潤(rùn)關(guān)于月投資于
B種商品的金額的函數(shù)關(guān)系式可近似的用表示
設(shè)下月投資于A種商品x萬(wàn)元,則投資于B種商品萬(wàn)元,可獲純利潤(rùn):
當(dāng)時(shí),
故下月分別投資A、B兩種商品3.2萬(wàn)元和8.8萬(wàn)元,可獲最大利潤(rùn)4.1萬(wàn)元
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】共享單車的推廣給消費(fèi)者帶來(lái)全新消費(fèi)體驗(yàn),迅速贏得廣大消費(fèi)者的青睞,然而,同時(shí)也暴露出管理、停放、服務(wù)等方面的問(wèn)題,為了了解公眾對(duì)共享單車的態(tài)度(提倡或不提倡),某調(diào)查小組隨機(jī)地對(duì)不同年齡段50人進(jìn)行調(diào)查,將調(diào)查情況整理如下表:
并且,年齡在和的人中持“提倡”態(tài)度的人數(shù)分別為5和3,現(xiàn)從這兩個(gè)年齡段中隨機(jī)抽取2人征求意見.
(Ⅰ)求年齡在中被抽到的2人都持“提倡”態(tài)度的概率;
(Ⅱ)求年齡在中被抽到的2人至少1人持“提倡”態(tài)度的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了普及環(huán)保知識(shí)增強(qiáng)環(huán)保意識(shí),某校從理工類專業(yè)甲班抽取60人,從文史類乙班抽取50人參加環(huán)保知識(shí)測(cè)試 附:k2= ,n=a+b+c+d
P(K2>k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
(1)根據(jù)題目條件完成下面2×2列聯(lián)表,并據(jù)此判斷你是否有99%的把握認(rèn)為環(huán)保知識(shí)與專業(yè)有關(guān)
優(yōu)秀 | 非優(yōu)秀 | 總計(jì) | |
甲班 | |||
乙班 | 30 | ||
總計(jì) | 60 |
(2)為參加上級(jí)舉辦的環(huán)保知識(shí)競(jìng)賽,學(xué)校舉辦預(yù)選賽,預(yù)選賽答卷滿分100分,優(yōu)秀的同學(xué)得60分以上通過(guò)預(yù)選,非優(yōu)秀的同學(xué)得80分以上通過(guò)預(yù)選,若每位同學(xué)得60分以上的概率為 ,得80分以上的概率為 ,現(xiàn)已知甲班有3人參加預(yù)選賽,其中1人為優(yōu)秀學(xué)生,若隨機(jī)變量X表示甲班通過(guò)預(yù)選的人數(shù),求X的分布列及期望E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+ax﹣lnx,a∈R.
(1)若函數(shù)f(x)在[1,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(2)令g(x)=f(x)﹣x2 , 是否存在實(shí)數(shù)a,當(dāng)x∈(0,e](e是自然常數(shù))時(shí),函數(shù)g(x)的最小值是3,若存在,求出a的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若時(shí)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年12月4日0時(shí)起鄭州市實(shí)施機(jī)動(dòng)車單雙號(hào)限行,新能源汽車不在限行范圍內(nèi),某人為了出行方便,準(zhǔn)備購(gòu)買某能源汽車.假設(shè)購(gòu)車費(fèi)用為14.4萬(wàn)元,每年應(yīng)交付保險(xiǎn)費(fèi)、充電費(fèi)等其他費(fèi)用共0.9萬(wàn)元,汽車的保養(yǎng)維修費(fèi)為:第一年0.2萬(wàn)元,第二年0.4萬(wàn)元,第三年0.6萬(wàn)元,…,依等差數(shù)列逐年遞增.
(1)設(shè)使用年該車的總費(fèi)用(包括購(gòu)車費(fèi)用)為,試寫出的表達(dá)式;
(2)問(wèn)這種新能源汽車使用多少年報(bào)廢最合算(即該車使用多少年平均費(fèi)用最少),年平均費(fèi)用的最小值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)為,平行于軸的兩條直線分別交于兩點(diǎn),交的準(zhǔn)線于兩點(diǎn).
(1)若在線段上, 是的中點(diǎn),證明: ;
(2)若的面積是的面積的兩倍,求中點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖①;B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖②.(注:利潤(rùn)和投資單位:萬(wàn)元)
(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù)關(guān)系式;
(2)已知該企業(yè)已籌集到18萬(wàn)元資金,并將全部投入A,B兩種產(chǎn)品的生產(chǎn),怎樣分配這18萬(wàn)元投資,才能使該企業(yè)獲得最大利潤(rùn)?其最大利潤(rùn)約為多少萬(wàn)元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com