8.等比數(shù)列{an}中,an>0,a3+2a2=a4,則數(shù)列{an}的公比為2.

分析 設(shè)等比數(shù)列{an}的公比為q>0,由a3+2a2=a4,可得${a}_{3}+\frac{2{a}_{3}}{q}$=a3q,化簡解出即可得出.化為:q2-q-2=0,q>0.

解答 解:設(shè)等比數(shù)列{an}的公比為q>0,
∵a3+2a2=a4,
∴${a}_{3}+\frac{2{a}_{3}}{q}$=a3q,
化為:q2-q-2=0,q>0.
解得q=2.
故答案為:2.

點(diǎn)評 本題考查了等比數(shù)列的通項(xiàng)公式及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知a,b為非零實(shí)數(shù),z=a+bi,“z2為純虛數(shù)”是“a=b”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若三個互不相等的正數(shù)x1,x2,x3滿足xi+lnxi=mi(i=1,2,3),且m1,m2,m3三個數(shù)成等差數(shù)列,則下列關(guān)系正確的是( 。
A.x1•x3=x22B.x1•x3<x22C.x1•x3>x22D.x1•x3≥x22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.過圓O外一點(diǎn)P,作圓的切線PA、PB,A、B為切點(diǎn),M為弦AB上一點(diǎn),過M作直線分別交PA、PB于點(diǎn)C、D.
(Ⅰ)若BD=2,AC=3,MC=4,求線段MD的長;
(Ⅱ)若MO⊥CD,求證:MD=MC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知球O的半徑為2,圓M和圓N是球的互相垂直的兩個截面,圓M和圓N的面積分別為2π和π,則|MN|=( 。
A.1B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.不等式2x2-2axy+y2≥0對任意x∈[1,2]及任意y∈[1,4]恒成立,則實(shí)數(shù)a取值范圍是(-∞,$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若雙曲線E:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的離心率為$\frac{{\sqrt{17}}}{3}$,則雙曲線E的漸近線方程為( 。
A.y=±xB.y=±$\frac{{2\sqrt{2}}}{3}$xC.y=±$\frac{1}{2}$xD.y=±$\frac{{3\sqrt{2}}}{4}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在四梭錐A-BCDE中,EB=EA=AB=BC.,∠EBC=90°,M為AC的中點(diǎn),AB⊥EM.
(1)求證:平面ABE⊥平面ABC;
(2)求二面角B-EM-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知x+y+z=0且xyz=2,求|x|+|y|+|z|的最小值.

查看答案和解析>>

同步練習(xí)冊答案