15.在技術(shù)工程中,常用到雙曲正弦函數(shù)$shx=\frac{{{e^x}-{e^{-x}}}}{2}$和雙曲余弦函數(shù)$chx=\frac{{{e^x}-{e^{-x}}}}{2}$,其實(shí)雙曲正弦函數(shù)和雙曲線余弦函數(shù)與我們學(xué)過(guò)的正弦和余弦函數(shù)相似,比如關(guān)于正、余弦函數(shù)有cos(x+y)=cosxcosy-sinxsiny成立,而關(guān)于雙曲正、余弦函數(shù)滿足ch(x+y)=chxchy-shxshy,請(qǐng)你類比關(guān)系式,得出關(guān)于雙曲正弦、雙曲余弦函數(shù)的關(guān)系中不正確的是(  )
A.sh(x+y)=shxchy+chxshyB.sh2x=2shxchx
C.ch2x=2sh2x-1D.ch2x+sh2x=1

分析 由余弦的二倍角公式可知,ch2x=1-2sh2x,可得結(jié)論.

解答 解:類比關(guān)系式,得sh(x+y)=shxchy+chxshy,sh2x=2shxchx,ch2x+sh2x=1正確.
由余弦的二倍角公式可知,ch2x=1-2sh2x,即C不正確;
故選C.

點(diǎn)評(píng) 本題考查類比推理,考查學(xué)生的探究能力,屬于基礎(chǔ)題型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期為4π,且其圖象向右平移$\frac{π}{5}$個(gè)單位后得到函數(shù)g(x)=sinωx的圖象,則φ等于( 。
A.-$\frac{π}{10}$B.-$\frac{π}{5}$C.$\frac{π}{10}$D.$\frac{π}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.將石子擺成如圖的梯形形狀,稱數(shù)列5,9,14,20,…為“梯形數(shù)”.根據(jù)圖形的構(gòu)成,此數(shù)列的第2 016項(xiàng)與5的差,即a2016-5=( 。
A.2 018×2 014B.2 018×2 013C.1 011×2 015D.1 010×2 012

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.y=5-sin2x-4cosx最小值為(  )
A.-2B.0C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知α是△ABC的一個(gè)內(nèi)角,且$sinα+cosα=\frac{1}{5}$,
(Ⅰ)判斷△ABC的形狀;
(Ⅱ)求$\frac{{sinxcosx+{{sin}^2}x}}{1-tanx}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知f(x)=2xf′(1)+lnx,則f′(1)=( 。
A.-eB.-1C.1D.e

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖所示,兩個(gè)陰影部分的面積之和可表示為( 。
A.$\int_{-1}^4{f(x)}dx$B.$-\int_{-1}^4{f(x)}dx$
C.$\int_3^4{f(x)}dx-\int_{-1}^3{f(x)dx}$D.$\int_{-1}^3{f(x)}dx-\int_3^4{f(x)dx}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.設(shè)a=${∫}_{0}^{\frac{π}{2}}$2cosxdx,則二項(xiàng)式(ax3-$\frac{1}{{x}^{2}}$)6展開(kāi)式中不含x3項(xiàng)的系數(shù)和是161.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.某地區(qū)的年降水量在下列范圍內(nèi)的概率如表所示:
年降水量(mm)[200,250][250,300][300,350][350,400]
概率0.300.210.140.08
則年降水量在[200,300](mm)范圍內(nèi)的概率為0.51,年降水量在[300,400](mm)范圍內(nèi)的概率為0.22.

查看答案和解析>>

同步練習(xí)冊(cè)答案