(2012•北京模擬)已知{an}是正數(shù)組成的數(shù)列,a1=1,且點(diǎn)(
an
,an+1
)(n∈N*)在函數(shù)y=x2+1的圖象上,那么數(shù)列{an}的通項(xiàng)公式是
an=n
an=n
分析:把給出的點(diǎn)的坐標(biāo)代入函數(shù)解析式,化簡后得到數(shù)列為等差數(shù)列,并求出公差,然后直接寫出等差數(shù)列通項(xiàng)公式.
解答:解:因?yàn)辄c(diǎn)(
an
,an+1
)(n∈N*)在函數(shù)y=x2+1的圖象上,所以an+1=(
an
)2+1=an+1
,即an+1-an=1,
所以數(shù)列{an}是以1為首項(xiàng),以1為公差的等差數(shù)列,則an=a1+(n-1)d=1+1×(n-1)=n.
故答案為an=n.
點(diǎn)評:本題考查了等差數(shù)列的通項(xiàng)公式,考查了數(shù)列的函數(shù)特性,此題為中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•北京模擬)已知a、b、c、d是公比為2的等比數(shù)列,則
2a+b
2c+d
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•北京模擬)函數(shù)y=
log
2
3
(3x-2)
的定義域?yàn)?!--BA-->
2
3
,1]
2
3
,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•北京模擬)如圖,在四棱錐P-ABCD中,PA⊥平面AC,且四邊形ABCD是矩形,則該四棱錐的四個側(cè)面中是直角三角形的有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•北京模擬)在數(shù)列{an}中,a1=
3
,an+1=
1+
a
2
n
-1
an
(n∈N*)
.?dāng)?shù)列{bn}滿足0<bn
π
2
,且 an=tanbn(n∈N*).
(1)求b1,b2的值;
(2)求數(shù)列{bn}的通項(xiàng)公式;
(3)設(shè)數(shù)列{bn}的前n項(xiàng)和為Sn.若對于任意的n∈N*,不等式Sn≥(-1)nλbn恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•北京模擬)甲、乙、丙、丁四個人進(jìn)行傳球練習(xí),每次球從一個人的手中傳入其余三個人中的任意一個人的手中.如果由甲開始作第1次傳球,經(jīng)過n次傳球后,球仍在甲手中的所有不同的傳球種數(shù)共有an種.
(如,第一次傳球模型分析得a1=0.)
(1)求 a2,a3的值;
(2)寫出 an+1與 an的關(guān)系式(不必證明),并求 an=f(n)的解析式;
(3)求 
anan+1
的最大值.

查看答案和解析>>

同步練習(xí)冊答案