如圖,橢圓的中心為原點(diǎn),長軸在軸上,離心率,又橢圓上的任一點(diǎn)到橢圓的兩焦點(diǎn)的距離之和為.

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若平行于軸的直線與橢圓相交于不同的兩點(diǎn),過、兩點(diǎn)作圓心為的圓,使橢圓上的其余點(diǎn)均在圓外.求的面積的最大值.

(1);(2).

解析試題分析:(1)根據(jù)題干條件求出、的值,進(jìn)而求出的值,從而確定橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)點(diǎn)的坐標(biāo)為,并設(shè)橢圓上任意一點(diǎn)的坐標(biāo)為,求出,根據(jù)題中條件得到點(diǎn)的坐標(biāo)使得取得最小值,從而得出,最后再求出面積的表達(dá)式,結(jié)合二次函數(shù)或基本不等式求出的最大值.
試題解析:(1)設(shè)所求橢圓的標(biāo)準(zhǔn)方程為
由題意得,解的,,,
所求橢圓的標(biāo)準(zhǔn)方程為;
(2)由橢圓的對(duì)稱性,可設(shè),又設(shè)是橢圓上任意一點(diǎn),則
,,
所以當(dāng)時(shí),取最小值
又由題意得:是橢圓上任意一點(diǎn)到的距離最小的點(diǎn),
設(shè),因此當(dāng)時(shí),取最小值,
又因,所以,
由對(duì)稱性知,故,所以
S,
所以當(dāng)時(shí),的面積取得最大值.
考點(diǎn):1.橢圓的方程;2.圓與橢圓的位置關(guān)系;3.二次函數(shù)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知?jiǎng)訄A與圓相切,且與圓相內(nèi)切,記圓心的軌跡為曲線;設(shè)為曲線上的一個(gè)不在軸上的動(dòng)點(diǎn),為坐標(biāo)原點(diǎn),過點(diǎn)的平行線交曲線兩個(gè)不同的點(diǎn).
(1)求曲線的方程;
(2)試探究的比值能否為一個(gè)常數(shù)?若能,求出這個(gè)常數(shù),若不能,請(qǐng)說明理由;
(3)記的面積為,的面積為,令,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C: (a>b>0)的離心率為,且橢圓C上一點(diǎn)與兩個(gè)焦點(diǎn)F1,F(xiàn)2構(gòu)成的三角形的周長為2+2.
(1)求橢圓C的方程;
(2)過右焦點(diǎn)F2作直線l 與橢圓C交于A,B兩點(diǎn),設(shè),若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓)的右焦點(diǎn)為,且橢圓過點(diǎn)
(1)求橢圓的方程;
(2)設(shè)斜率為的直線與橢圓交于不同兩點(diǎn)、,以線段為底邊作等腰三角形,其中頂點(diǎn)的坐標(biāo)為,求△的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖已知拋物線過點(diǎn),直線兩點(diǎn),過點(diǎn)且平行于軸的直線分別與直線軸相交于點(diǎn)
 
(1)求的值;
(2)是否存在定點(diǎn),當(dāng)直線過點(diǎn)時(shí),△與△的面積相等?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(理)已知點(diǎn)是平面直角坐標(biāo)系上的一個(gè)動(dòng)點(diǎn),點(diǎn)到直線的距離等于點(diǎn)到點(diǎn)的距離的2倍.記動(dòng)點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)斜率為的直線與曲線交于兩個(gè)不同點(diǎn),若直線不過點(diǎn),設(shè)直線的斜率分別為,求的數(shù)值;
(3)試問:是否存在一個(gè)定圓,與以動(dòng)點(diǎn)為圓心,以為半徑的圓相內(nèi)切?若存在,求出這個(gè)定圓的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓)的右焦點(diǎn),右頂點(diǎn),且

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若動(dòng)直線與橢圓有且只有一個(gè)交點(diǎn),且與直線交于點(diǎn),問:是否存在一個(gè)定點(diǎn),使得.若存在,求出點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是橢圓上兩點(diǎn),點(diǎn)的坐標(biāo)為.
(1)當(dāng)關(guān)于點(diǎn)對(duì)稱時(shí),求證:;
(2)當(dāng)直線經(jīng)過點(diǎn)時(shí),求證:不可能為等邊三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓,橢圓的長軸為短軸,且與有相同的離心率.
(1)求橢圓的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),點(diǎn)分別在橢圓上,,求直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案