【題目】已知函數(shù)f(x)=﹣ +4x﹣3lnx在[t,t+1]上不單調(diào),則t的取值范圍是 .
【答案】0<t<1或2<t<3
【解析】解:∵函數(shù) ∴f′(x)=﹣x+4﹣
∵函數(shù) 在[t,t+1]上不單調(diào),
∴f′(x)=﹣x+4﹣ =0在[t,t+1]上有解
∴ 在[t,t+1]上有解
∴g(x)=x2﹣4x+3=0在[t,t+1]上有解
∴g(t)g(t+1)≤0或
∴0<t<1或2<t<3.
所以答案是:0<t<1或2<t<3.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識(shí),掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系.已知曲線(xiàn)C1: (t為參數(shù)),C2: (θ為參數(shù)). (Ⅰ)化C1 , C2的方程為普通方程,并說(shuō)明它們分別表示什么曲線(xiàn);
(Ⅱ)若C1上的點(diǎn)P對(duì)應(yīng)的參數(shù)為t=﹣ ,Q為C2上的動(dòng)點(diǎn),求線(xiàn)段PQ的中點(diǎn)M到直線(xiàn)C3:ρcosθ﹣ ρsinθ=8+2 距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐S﹣ABC中,△ABC為直角三角形,且∠ACB=90°,SA⊥平面ABC,AD⊥SC.
求證:AD⊥平面SBC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線(xiàn)mx+ y﹣1=0在y軸上的截距是﹣1,且它的傾斜角是直線(xiàn) =0的傾斜角的2倍,則( )
A.m=﹣ ,n=﹣2
B.m= ,n=2
C.m= ,n=﹣2
D.m=﹣ ,n=2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,一個(gè)頂點(diǎn)坐標(biāo)為(2,0),離心率為 .
(1)求這個(gè)橢圓的方程;
(2)若這個(gè)橢圓左焦點(diǎn)為F1 , 右焦點(diǎn)為F2 , 過(guò)F1且斜率為1的直線(xiàn)交橢圓于A、B兩點(diǎn),求△ABF2的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知{an}是各項(xiàng)為正數(shù)的等比數(shù)列,{bn}是等差數(shù)列,且a1=b1=1,b2+b3=2a3 , a5﹣3b2=7.
(1)求{an}和{bn}的通項(xiàng)公式;
(2)設(shè)cn=anbn , n∈N* , 求數(shù)列{cn}的前n項(xiàng)和為Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1的底面是邊長(zhǎng)為2的正三角形且側(cè)棱垂直于底面,側(cè)棱長(zhǎng)是 ,D是AC的中點(diǎn).
(1)求證:B1C∥平面A1BD;
(2)求二面角A1﹣BD﹣A的大;
(3)求直線(xiàn)AB1與平面A1BD所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知F2、F1是雙曲線(xiàn) =1(a>0,b>0)的上、下焦點(diǎn),點(diǎn)F2關(guān)于漸近線(xiàn)的對(duì)稱(chēng)點(diǎn)恰好落在以F1為圓心,|OF1|為半徑的圓上,則雙曲線(xiàn)的離心率為( )
A.3
B.
C.2
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】飛機(jī)的航線(xiàn)和山頂在同一個(gè)鉛垂直平面內(nèi),已知飛機(jī)的高度為海拔15000m,速度為1000km/h,飛行員先看到山頂?shù)母┙菫?8°,經(jīng)過(guò)108s后又看到山頂?shù)母┙菫?8°,則山頂?shù)暮0胃叨葹椋?)
A.(15﹣18 sin18°cos78°)km
B.(15﹣18 sin18°sin78°)km
C.(15﹣20 sin18°cos78°)km
D.(15﹣20 sin18°sin78°)km
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com