【題目】已知f(x)=∫0x(2t﹣4)dt,則當(dāng)x∈[1,3]時,f(x)的最小值為

【答案】-4
【解析】解:f(x)=∫0x(2t﹣4)dt=(t2﹣4t)|0x=x2﹣4x =(x﹣2)2﹣4(1≤x≤3),
∴當(dāng)x=2時,f(x)min=﹣4.
故答案是﹣4.
【考點(diǎn)精析】掌握函數(shù)的最值及其幾何意義是解答本題的根本,需要知道利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值;利用圖象求函數(shù)的最大(。┲担焕煤瘮(shù)單調(diào)性的判斷函數(shù)的最大(。┲担

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A={0,2,4,6,8,10},B={4,8},則AB=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x∈(﹣1,3),則函數(shù)y=(x﹣2)2的值域是(
A.(1,4)
B.[0,9)
C.[0,9]
D.[1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在R上的偶函數(shù),且f(x+4)=f(x﹣2).若當(dāng)x∈[﹣3,0]時,f(x)=6x , 則f(919)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x∈(﹣∞,0)時,f(x)=2x3+x2 , 則f(2)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x2+2cosx,若f(x1)>f(x2),則下列不等式一定成立的是(
A.x1>x2
B.|x1|<|x2|
C.x1>|x2|
D.x12>x22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用反證法證明某命題時,對其結(jié)論:“自然數(shù)a、b、c中恰有一個奇數(shù)”正確的反設(shè)為(
A.a、b、c都是奇數(shù)
B.a、b、c都是偶數(shù)
C.a、b、c中至少有兩個奇數(shù)
D.a、b、c中至少有兩個奇數(shù)或都是偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|﹣4≤x﹣6≤0},集合B={x|2x﹣6≥3﹣x}.
(1)求R(A∩B);
(2)若C={x|x≤a},且A∩C=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的不等式|x﹣1|﹣|x+m|≥a有解時,實(shí)數(shù)a的最大值為5,則實(shí)數(shù)m的值為

查看答案和解析>>

同步練習(xí)冊答案