將直線2x-y+λ=0沿x軸向左平移一個單位,所得直線與曲線C:
x=-1+
5
cosθ
y=2+
5
sinθ
(θ為參數(shù))相切,則實(shí)數(shù)λ的值為(  )
A、-7或3B、-2或8
C、0或10D、1或11
考點(diǎn):參數(shù)方程化成普通方程
專題:直線與圓,坐標(biāo)系和參數(shù)方程
分析:先求出平移后所得直線l的方程,把曲線C的方程化為普通方程,求出圓心和半徑,再根據(jù)圓心到直線l的距離等于半徑可得實(shí)數(shù)λ的值.
解答: 解:將直線2x-y+λ=0沿x軸向左平移一個單位,所得直線l的方程為2(x+1)-y+λ=0,即 2x-y+2+λ=0.
曲線C:
x=-1+
5
cosθ
y=2+
5
sinθ
(θ為參數(shù))即 (x+1)2+(y-2)2=5,表示以C(-1,2)為圓心,半徑等于
5
的圓.
再根據(jù)圓心到直線l的距離等于半徑可得
|-2-2+2+λ|
5
=
5
,可得λ=3 或λ=-7,
故選:A.
點(diǎn)評:本題主要考查把參數(shù)方程化為普通方程的方法,點(diǎn)到直線的距離公式、直線和圓的位置關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,以(
a
2
,
π
2
)為圓心,
a
2
為半徑的圓的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文科)一動圓過定點(diǎn)P(0,1),且與定直線l:y=-1相切.
(1)求動圓圓心C的軌跡方程;
(2)若(1)中的軌跡上兩動點(diǎn)記為A(x1,y1),B(x2,y2),且x1x2=-16.
①求證:直線AB過一定點(diǎn),并求該定點(diǎn)坐標(biāo);
②求|PA|+|PB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=sin(x+
π
6
)-cos(x+
π
3
),g(x)=2sin2
x
2

(Ⅰ)若α是第一象限角,且f(a)=
3
3
5
,求g(a)的值;
(Ⅱ)求函數(shù)f(x)+g(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩人約定在19:30至20:30之間相見,并且先到者必須等遲到者20分鐘方可離去,如果兩人出發(fā)是各自獨(dú)立的,在19:30至20:30各時刻相見的可能性是相等的,那么兩人在約定時間內(nèi)相見的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2|x|+1,x≤2
-
1
2
x+6,x>2
,若a,b,c互不相等,且滿足f(a)=f(b)=f(c),則a+b+c的取值范圍是(  )
A、(1,10)
B、(5,6)
C、(2,8)
D、(0,10)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知AB是⊙O的直徑,點(diǎn)C、D在⊙O上,點(diǎn)E在⊙O外,∠EAC=∠D=60°.
(1)求∠ABC的度數(shù);
(2)求證:AE是⊙O的切線;
(3)當(dāng)BC=4時,求劣弧AC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線的極坐標(biāo)方程為ρsin(θ+
π
4
)=
2
2
,求A(2,
4
)
到這條直線的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某調(diào)查機(jī)構(gòu)就某單位一千多名職工的月收入進(jìn)行調(diào)查,現(xiàn)從中隨機(jī)抽出100名,已知抽到的職工的月收入都在[1500,4500)元之間,根據(jù)調(diào)查結(jié)果得出職工的月收入情況殘缺的頻率分布直方圖如圖所示,則該單位職工的月收入的平均數(shù)大約是
 
元.

查看答案和解析>>

同步練習(xí)冊答案