執(zhí)行兩次如圖所示的程序框圖,若第一次輸入的a的值為-1.2,第二次輸入的a的值為1.2,則第一次,第二次輸出的a的值分別為( )

A.0.2,0.2 B.0.2,0.8

C.0.8,0.2 D.0.8,0.8

 

C

【解析】第一次a=-1.2時,輸出a=0.8.

第二次a=1.2時,輸出a=0.2.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 集合、常用邏輯用語、不等式、函數(shù)與導(dǎo)數(shù)(解析版) 題型:解答題

已知集合A={y|y2-(a2+a+1)y+a(a2+1)>0},B={y|y=x2-x+,0≤x≤3}.

(1)若A∩B=∅,求a的取值范圍;

(2)當(dāng)a取使不等式x2+1≥ax恒成立的a的最小值時,求(∁RA)∩B.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 立體幾何(解析版) 題型:解答題

在△ABC中,角A,B,C所對邊的邊長分別是a,b,c.

(1)若c=2,C=且△ABC的面積等于,求cos(A+B)和a,b的值;

(2)若B是鈍角,且cos A=,sin B=,求sin C的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 概率與統(tǒng)計(解析版) 題型:解答題

受轎車在保修期內(nèi)維修費(fèi)等因素的影響,企業(yè)生產(chǎn)每輛轎車的利潤與該轎車首次出現(xiàn)故障的時間有關(guān).某轎車制造廠生產(chǎn)甲、乙兩種品牌轎車,保修期均為2年.現(xiàn)從該廠已售出的兩種品牌轎車中各隨機(jī)抽取50輛,統(tǒng)計數(shù)據(jù)如下:

品牌

 

 

 

首次出現(xiàn)故障時間x(年)

0<x≤1

1<x≤2

x>2

0<x≤2

x>2

轎車數(shù)量(輛)

2

3

45

5

45

每輛利潤(萬元)

1

2

3

1.8

2.9

 

將頻率視為概率,解答下列問題:

(1)從該廠生產(chǎn)的甲品牌轎車中隨機(jī)抽取一輛,求其首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率;

(2)若該廠生產(chǎn)的轎車均能售出,記生產(chǎn)一輛甲品牌轎車的利潤為X1,生產(chǎn)一輛乙品牌轎車的利潤為X2,分別求X1,X2的分布列;

(3)該廠預(yù)計今后這兩種品牌轎車銷量相當(dāng),由于資金限制,只能生產(chǎn)其中一種品牌的轎車.若從經(jīng)濟(jì)效益的角度考慮,你認(rèn)為應(yīng)生產(chǎn)哪種品牌的轎車?說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 概率與統(tǒng)計(解析版) 題型:填空題

從某小區(qū)抽取100戶居民進(jìn)行月用電量調(diào)查,發(fā)現(xiàn)其用電量都在50至350度之間,頻率分布直方圖如圖所示.

(1)直方圖中x的值為________;

(2)在這些用戶中,用電量落在區(qū)間[100,250)內(nèi)的戶數(shù)為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 概率與統(tǒng)計(解析版) 題型:選擇題

若i(x+yi)=3+4i,x,y∈R,則復(fù)數(shù)x+yi的模是( )

A.2 B.3 C.4 D.5

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 數(shù)列、推理與證明(解析版) 題型:填空題

(2013·淄博模擬)如圖,一個類似楊輝三角的數(shù)陣,請寫出第n(n≥2)行的第2個數(shù)為________.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 三角函數(shù)、解三角形與平面向量(解析版) 題型:解答題

已知函數(shù)f(x)=cos,x∈R.

(1)求f的值;

(2)若cos θ=,θ∈,求f.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年吉林省延邊州高考復(fù)習(xí)質(zhì)量檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,PA為⊙O的切線,A為切點(diǎn),PBC是過點(diǎn)O的割線,PA=10,PB=5。

求:(1)⊙O的半徑;

(2)s1n∠BAP的值。

 

查看答案和解析>>

同步練習(xí)冊答案