2.sin(-480°)=(  )
A.$\frac{{\sqrt{3}}}{2}$B.-$\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

分析 由條件利用誘導公式化簡所給式子的值,可得結果.

解答 解:sin(-480°)=sin(-120°)=-sin120°=-sin60°=-$\frac{\sqrt{3}}{2}$,
故選:B.

點評 本題主要考查應用誘導公式化簡三角函數(shù)式,要特別注意符號的選取,這是解題的易錯點,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

3.設a=log310,b=log${\;}_{\frac{1}{2}}$$\frac{1}{6}$,c=($\frac{4}{5}$)${\;}^{-\frac{3}{2}}$,則a,b,c中最大的數(shù)是b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知拋物線C:y2=4x的焦點為F,它的準線與對稱軸的交點為H,過點H的直線與拋物線C交于A、B兩點,過點A作直線AF與拋物線C交于另一點B1,過點A、B、B1的圓的圓心坐標為(a,b),半徑為r,則下列各式成立的是( 。
A.a2=r2-$\frac{1}{4}$B.a=rC.a2=r2+$\frac{1}{4}$D.a2=r2+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知圓E:(x+$\sqrt{3}$)2+y2=16,點F($\sqrt{3}$,0),P是圓E上任意一點,線段PF的垂直平分線和半徑PE相交于點Q.
(1)求動點Q的軌跡Γ的方程;
(2)過點C(-2,0)作兩條互相垂直的直線l1,l2,若l1,l2分別與軌跡Γ相交于點A,B,直線AB與x軸交于點M,過點M作直線l交軌跡Γ于G,H兩點,求△OGH面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.有下列說法:
①在△ABC中,若$\overrightarrow{BC}$•$\overrightarrow{CA}$<0,則△ABC是鈍角三角形;
②在△ABC中$\overrightarrow{AB}$=$\overrightarrow{c}$,$\overrightarrow{BC}$=$\overrightarrow{a}$,$\overrightarrow{CA}$=$\overrightarrow$,若|$\overrightarrow{a}$|=|$\overrightarrow$-$\overrightarrow{c}$|,則△ABC是直角三角形;
③在△ABC中,若tan $\frac{A+B}{2}$=sin C,則sin2A+sin2B=1;
④在△ABC中,E,F(xiàn)分別是AC,AB的中點,且3AB=2AC,若$\frac{BE}{CF}$<t恒成立,則t的最小值為$\frac{7}{8}$.
其中正確說法的個數(shù)是( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.事件A,B互斥,它們都不發(fā)生的概率為$\frac{2}{5}$,且P(A)=2P(B),則$P(\overline A)$=$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知向量$\overrightarrow a$,$\overrightarrow b$均為單位向量,它們的夾角為60°,則|2$\overrightarrow a$-3$\overrightarrow b}$|等于( 。
A.1B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知某射擊運動員,每次擊中目標的概率是0.8,則該射擊運動員射擊4次至少擊中3次的概率為( 。
A.0.85B.0.75C.0.8D.0.8192

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.等比數(shù)列{an}的首項為a,公比為q,前n項倒數(shù)的和為S,則S等于( 。
A.$\frac{a(1-{q}^{2})}{1-q}$B.$\frac{\frac{1}{a}({q}^{n}-1)}{q-1}$C.$\frac{(1-\frac{1}{{q}^{n}})}{a(1-\frac{1}{q})}$D.$\frac{a(1-\frac{1}{{q}^{n}})}{(1-\frac{1}{q})}$

查看答案和解析>>

同步練習冊答案