18.已知全集U={1,2,3,4,5,6,7},集合A={1,3,7},B={x|x=log2(a+1),a∈A},則(∁UA)∩(
(∁UB)=( 。
A.{1,3}B.{5,6}C.{4,5,6}D.{4,5,6,7}

分析 求解集合B,∁UA,∁UB.根據(jù)集合的基本運(yùn)算即可求(∁UA)∩(∁UB).

解答 解:全集U={1,2,3,4,5,6,7},集合A={1,3,7},
∴∁UA={2,4,5,6}
集合B={|x=log2(a+1),a∈A},
當(dāng)a=1時(shí),B={x|x=log2(1+1)=1,
當(dāng)a=3時(shí),B={x|x=log2(3+1)=2,
當(dāng)a=7時(shí),B={x|x=log2(7+1)=3,
∴集合B={1,2,3},
∴∁UB={4,5,6,7},
故得(∁UA)∩(∁UB)={4,5,6}
故選C.

點(diǎn)評(píng) 本題主要考查集合的基本運(yùn)算,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知函數(shù)f(x)=e-x-|lnx|的兩個(gè)零點(diǎn)分別為x1,x2,則( 。
A.0<x1x2<1B.x1x2=1C.1<x1x2<eD.x1x2>e

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.中國(guó)古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個(gè)問(wèn)題:“三百七十八里關(guān),初行健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見(jiàn)次日行里數(shù),請(qǐng)公仔細(xì)算相還.”其意思為:“有一個(gè)人走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后到達(dá)目的地,請(qǐng)問(wèn)第三天走了(  )
A.60里B.48里C.36里D.24里

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.如圖是某幾何體的三視圖,則該幾何體的體積為( 。
A.$\frac{8}{3}$B.$\frac{4}{3}$C.$\frac{8\sqrt{2}}{3}$D.$\frac{4\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知f(x)=|x-a|+|x-1|
(Ⅰ)當(dāng)a=2,求不等式f(x)<4的解集;
(Ⅱ)若對(duì)任意的x,f(x)≥2恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知橢圓C:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1的左、右頂點(diǎn)分別為A,B,F(xiàn)為橢圓C的右焦點(diǎn),圓x2+y2=4上有一動(dòng)點(diǎn)P,P不同于A,B兩點(diǎn),直線PA與橢圓C交于點(diǎn)Q,則$\frac{{k}_{PB}}{{k}_{QF}}$的取值范圍是( 。
A.(-∞,-$\frac{3}{4}$)∪(0,$\frac{3}{4}$)B.(-∞,0)∪(0,$\frac{3}{4}$)C.(-∞,-1)∪(0,1)D.(-∞,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.在△ABC中,角C=60°,tan$\frac{A}{2}$+tan$\frac{B}{2}$=1,則tan$\frac{A}{2}$•tan$\frac{B}{2}$=1-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.為了調(diào)查黃山市某校高中學(xué)生是否愿意在寒假期間參加志愿者活動(dòng),用簡(jiǎn)單隨機(jī)抽樣方法從該校調(diào)查了80人,結(jié)果如下:
是否愿意提供志愿者服務(wù)
性別
愿意不愿意
男生3010
女生2020
(1)若用分層抽樣的方法在愿意參加志愿者活動(dòng)的學(xué)生抽取5人,則應(yīng)女生中抽取多少人?
(2)在(1)中抽取出的5人中任選2人,求“被選中的恰好是一男一女”的概率.
 P(K2≥k0 0.025 0.010
 k0 5.024 6.635
注:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知三棱臺(tái)ABC-A1B1C1中,平面BB1C1C⊥平面ABC,∠ACB=90°,BB1=CC1=B1C1=2,BC=4,AC=6
(1)求證:BC1⊥平面AA1C1C
(2)點(diǎn)D是B1C1的中點(diǎn),求二面角A1-BD-B1的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案