已知函數(shù)f(x)=4x-2xt+t+1在區(qū)間(0,+∞)上的圖象恒在x軸上方,則實數(shù)t的取值范圍是
 
考點:指數(shù)型復(fù)合函數(shù)的性質(zhì)及應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)復(fù)合函數(shù)的性質(zhì)得出
t
2
≤1
g(1)≥0
t
2
>1
g(
t
2
)>0
求解即可.
解答: 解:設(shè)m=2x,x∈(0,+∞),∴m∈(1,+∞),
∵函數(shù)f(x)=4x-2xt+t+1在區(qū)間(0,+∞)上的圖象恒在x軸上方,
∴g(m)=m2-tm+t+1,m∈(1,+∞),
t
2
≤1
g(1)≥0
t
2
>1
g(
t
2
)>0

∴t≤2或2<t<2+2
2

∴實數(shù)t的取值范圍是(-∞,2+2
2

故答案為:(-∞,2+2
2
點評:本題考查了有關(guān)指數(shù),二次函數(shù)的性質(zhì)綜合的題目,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(1,1)、B(-1,5)及
AC
=
1
2
AB
,
AD
=2
AB
AE
=-
1
2
AB
,求C、D、E的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二項式(
x
-
2
3x
n展開式的第五項的系數(shù)與第三項的系數(shù)的比為30:1.
(1)展開式的所有有理項;
(2)n+6Cn2+36Cn3+…+6n-1Cnn;
(3)系數(shù)的絕對值最大的項(結(jié)果可以有組合數(shù)、冪)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

y=
1+2sinx
sinx-2
的值域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知-
π
2
θ<
π
2
,且sinθ+cosθ=
10
5
,則tanθ的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中是奇函數(shù)是( 。
A、y=x3-x+
1
x
B、y=
x
+
1
x
C、y=x4-x2
D、y=x6+x2+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

y=
1
1-x
與y=sinπx(-2≤x≤4)的圖象所有交點橫坐標(biāo)之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
9x
1+ax2
(a>0).
(1)若a=1,求f(x)在x∈(0,+∞)時的最大值;
(2)若直線y=-x+2a是曲線y=f(x)的切線,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1-2|x-
1
2
|,
0≤x≤1
lo
g
 
2013
x,
x>1
,若直線y=m與函數(shù)y=f(x)三個不同交點的橫坐標(biāo)依次為x1,x2,x3,且x1<x2<x3,則x3的取值范圍是( 。
A、(2,2014)
B、(1,2014)
C、(2,2013)
D、(1,2013)

查看答案和解析>>

同步練習(xí)冊答案