設(shè)U=R,集合A={x丨x<-4或x>1},B={x丨-2<x<3},求∁u(A∩B)和∁u(A∪B).
考點:交、并、補集的混合運算
專題:集合
分析:由A與B,求出兩集合的交集,根據(jù)全集U=R,求出交集的補集即可;求出A與B的并集,找出并集的補集即可.
解答: 解:∵U=R,集合A={x|x<-4或x>1},B={x|-2<x<3},
∴A∩B={x|1<x<3},A∪B={x|x<-4或x>-2},
則∁U(A∩B)={x|x≤1或x≥3},
U(A∪B)={x|-4≤x≤-2}.
點評:此題考查了交、并、補集的混合運算,熟練掌握各自的定義是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3-3x,x∈R,試判斷函數(shù)在(1,+∞)上的單調(diào)性,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡:
1-sinα
,α∈(0,
π
2
)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠BAC、∠ABC、∠ACB成等差數(shù)列,且AB=4,D點是斜邊BC上一動點,連接AD,以AD為折痕,將△ABD折到與△ADC的同一個平面內(nèi),B變?yōu)锽1,設(shè)∠BAD=θ.
(1)求BD的長;
(2)求B1C的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn滿足:Sn+an=n(n=1,2,3…).
(1)求a1,并證明:數(shù)列{an-1}為等比數(shù)列;
(2)設(shè)bn=(2-n)(an-1)(n=1,2,3…),如果對任意n∈N*,bn≤t2-
1
4
t,求t的范圍;
(3)記Cn=-
1
an-1
試問{Cn}中是否存在一項Ck,使得Ck恰好可以表示為該數(shù)列中連續(xù)P(P∈N,P≥2)項的和?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知x>0,求x+
1
x
的最值;
(2)已知x<0,求x+
1
x
的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C1:x2+y2-4x+8y+11=0與C2:x2+y2-2x+6y+11+2m=0相交,另一圓C與x軸相切,且與圓C1關(guān)于C1、C2的公共弦所在直線L對稱,求m的值及圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在復平面內(nèi),復數(shù)
2-i
i
對應的點的坐標為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a=5,b=8,并且△ABC的面積為10
3
,則c=
 

查看答案和解析>>

同步練習冊答案