已知函數(shù)f(x)=|2sinx-t|(t>0),若函數(shù)的最大值為a,最小值為b,且a<2b,則t的取值范圍是
 
考點(diǎn):函數(shù)的最值及其幾何意義
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由-1≤sinx≤1知
1
2
≤2sinx≤2;討論t以確定函數(shù)的最值,從而解得.
解答: 解:∵-1≤sinx≤1,
1
2
≤2sinx≤2;
①若t
1
2

則a=2-t,b=
1
2
-t;
則2-t<2(
1
2
-t);
在t>0時無解,
②若
1
2
≤t≤2;
最小值為0,故a<2b無解;
③若t>2;
則a=t-
1
2
,b=t-2;
故t-
1
2
<2(t-2);
解得,t>
7
2
;
故答案為:(
7
2
,+∞).
點(diǎn)評:本題考查了函數(shù)的最值的應(yīng)用及分類討論的數(shù)學(xué)思想應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a-b•2x
1+2x
是R上的奇函數(shù),且f(-1)=
1
3

(Ⅰ)求a,b的值;
(Ⅱ)證明f(x)在R上是減函數(shù);
(Ⅲ)解關(guān)于x的不等式:f(1-2x)+f(2-x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在平面直角坐標(biāo)系xOy中,已知⊙C:x2+y2-6x+5=0,點(diǎn)A、B在⊙C上,且AB=2
3
,則|
OA
+
OB
|的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且an+Sn=1(n∈N*).
(1)求{an}的通項公式;
(2)若數(shù)列{bn}滿足b1=1,且bn+1=bn+an,求{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足a1=1,d=1,數(shù)列{bn}滿足b1=a1,
bn+1
bn
=
a4
a2

求(1)an的通項公式 
(2)bn的前10項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個三棱柱的側(cè)視圖、俯視圖如圖所示,則三棱柱的表面積是(  )
A、16+6
2
B、16+6
3
C、12+6
2
D、14+6
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,既是奇函數(shù),又在區(qū)間[-1,1]上單調(diào)遞減的是( 。
A、f(x)=sinx
B、f(x)=cosx
C、f(x)=
2x+2-x
2
D、f(x)=-x-x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列三個命題:
①命題p:?x∈R,使得x2+x-1<0,則?p:?x∈R,使得x2+x-1≥0.
②“x>5或x<-1”是“x2-4x-5>0”的充要條件.
③若p∨q為真命題,則p∧q為真命題.
其中正確命題的個數(shù)為(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=3x+2,則f(a-1)=
 

查看答案和解析>>

同步練習(xí)冊答案