據(jù)專家估算,我國(guó)每年在餐桌上浪費(fèi)的食物約2000億元,相當(dāng)于2億多人一年的口糧.你是否為“光盤族”?圍繞此主題,在某城市廣場(chǎng)隨機(jī)調(diào)查了50位中年人和老年人,根據(jù)他們對(duì)此問題的回答得到下面的2×2列聯(lián)表:
老年人中年人合計(jì)
非“光盤族”23032
“光盤族”81018
合計(jì)104050
(1)由以上統(tǒng)計(jì)的2×2列聯(lián)表分析能否有99.5%的把握認(rèn)為“是光盤族與年齡層次有關(guān)”,說明你的理由;
下面的臨界值表供參考:
k02.0722.7063.8415.0246.6357.87910.828
P( K2≥k00.150.100.050.0250.0100.0050.001
參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,n=a+b+c+d.
(2)若參加此次調(diào)查的50人中,甲、乙等6人恰為糧食局的工作人員,現(xiàn)在要從這6人中,隨機(jī)選出2人統(tǒng)計(jì)調(diào)查結(jié)果,求甲、乙兩人至少有1人入選的概率.
考點(diǎn):獨(dú)立性檢驗(yàn),列舉法計(jì)算基本事件數(shù)及事件發(fā)生的概率
專題:概率與統(tǒng)計(jì)
分析:(1)根據(jù)2×2列聯(lián)表利用公式求解判斷即可.
(2)設(shè)6人分別為甲、乙、a、b、c、d,寫出選出的2人所有可能的情況,其甲、乙至少有1人入選的情況種數(shù),然后求解概率.
解答: 解:(1)根據(jù)2×2列聯(lián)表可知K2=
50(20-240)2
32×18×10×40
≈10.503>7.879

所以有99.5%的把握認(rèn)為“是光盤族與年齡層次有關(guān)”
(2)設(shè)6人分別為甲、乙、a、b、c、d,則選出的2人所有可能的情況為:
甲乙,甲a,甲b,甲c,甲d,乙a,乙b,乙c,乙d,ab,ac,ad,bc,bd,cd共15種
其中甲、乙至少有1人入選的情況有9種.
∴甲、乙兩人至少有1人入選的概率為P=
9
15
=
3
5
點(diǎn)評(píng):本題考查對(duì)立檢驗(yàn)以及古典概型概率的求法,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
9
-
y2
4
=1,A、B為過左焦點(diǎn)F1的直線與雙曲線左支的兩個(gè)交點(diǎn),|AB|=9,F(xiàn)2為右焦點(diǎn),則△AF2B的周長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=|ln|3x-1||在定義域的某個(gè)子區(qū)間(k-1,k+1)上不具有單調(diào)性,則實(shí)數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={a,b,c,d},集合B={e,f},其中a,b,c,d,e,f均為實(shí)數(shù).
(1)從集合A到集合B能構(gòu)成多少個(gè)不同的映射?
(2)能構(gòu)成多少個(gè)以集合A為定義域,集合B為值域的不同函數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-
1
x
-alnx
(1)若f(x)無極值點(diǎn),求a的取值范圍;
(2)設(shè)g(x)=x+
1
x
-(lnx)2,當(dāng)a取(1)中的最大值時(shí),求g(x)的最小值;
(3)證明不等式:
n
i=1
1
2i(2i+1)
>ln
2n+1
2n+1
(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等比數(shù)列,首項(xiàng)a1=1,公比q>0,其前n項(xiàng)和為Sn,且S1+a1,S3+a3,S2+a2成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足an+1=(
1
2
 anbn,Tn為數(shù)列{bn}的前n項(xiàng)和,若Tn≥m恒成立,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,且過點(diǎn)(-2,-4),焦點(diǎn)在y軸上,求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y滿足
y≤x+2
x+y≤1
y≥ex-e
,則x-y+1的取值范圍是(  )
A、[-2,2]
B、[-1,2]
C、[-2,e]
D、[-1,e]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:a≠1或b≠2,命題q:a+b≠3,則p是q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案